Industry 4.0 lets the industry build compact, precise, and connected assets and also has made modern industrial assets a massive source of data that can be used in process optimization, defining product quality, and predictive maintenance (PM). Large amounts of data are collected from machines, processed, and analyzed by different machine learning (ML) algorithms to achieve effective PM. These machines, assumed as edge devices, transmit their data readings to the cloud for processing and modeling. Transmitting massive amounts of data between edge and cloud is costly, increases latency, and causes privacy concerns. To address this issue, efforts have been made to use edge computing in PM applications., reducing data transmission costs and increasing processing speed. Federated learning (FL) has been proposed a mechanism that provides the ability to create a model from distributed data in edge, fog, and cloud layers without violating privacy and offers new opportunities for a collaborative approach to PM applications. However, FL has challenges in confronting with asset management in the industry, especially in the PM applications, which need to be considered in order to be fully compatible with these applications. This study describes distributed ML for PM applications and proposes two federated algorithms: Federated support vector machine (FedSVM) with memory for anomaly detection and federated long-short term memory (FedLSTM) for remaining useful life (RUL) estimation that enables factories at the fog level to maximize their PM models’ accuracy without compromising their privacy. A global model at the cloud level has also been generated based on these algorithms. We have evaluated the approach using the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) dataset to predict engines’ RUL Experimental results demonstrate the advantage of FedSVM and FedLSTM in terms of model accuracy, model convergence time, and network usage resources.
Affine Frequency Division Multiplexing (AFDM), a new chirp-based multicarrier waveform for high mobility communications, is introduced here. AFDM is based on discrete affine Fourier transform (DAFT), a generalization of discrete Fourier transform, which is characterized by two parameters that can be adapted to better cope with doubly dispersive channels. First, we derive the explicit input-output relation in the DAFT domain showing the effect of AFDM parameters in the input-output relation.Second, we show how the DAFT parameters underlying AFDM have to be set so that the resulting DAFT domain impulse response conveys a full delay-Doppler representation of the channel. Then, we show analytically that AFDM can achieve full diversity in doubly dispersive channels, where full diversity refers to the number of multipath components separable in either the delay or the Doppler domain, due to its full delay-Doppler representation. Furthermore, we present a low complexity detection method taking advantage of zero-padding. We also propose an embedded pilot-aided channel estimation scheme for AFDM, in which both channel estimation and data detection are performed within the same AFDM frame. Finally, simulations corroborate the validity of our analytical results and show the significant performance gains of AFDM over state-of-the-art multicarrier schemes in high mobility scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.