In this pair of papers (Part I and Part II in this issue), we investigate the issue of power control and subcarrier assignment in a sectorized two-cell downlink OFDMA system impaired by multicell interference. As recommended for WiMAX, we assume that the first part of the available bandwidth is likely to be reused by different base stations (and is thus subject to multicell interference) and that the second part of the bandwidth is shared in an orthogonal way between the different base stations (and is thus protected from multicell interference).Although the problem of multicell resource allocation is nonconvex in this scenario, we provide in Part I the general form of the global solution. In particular, the optimal resource allocation turns out to be "binary" in the sense that, except for at most one pivot-user in each cell, any user receives data either in the reused bandwidth or in the protected bandwidth, but not in both. The determination of the optimal resource allocation essentially reduces to the determination of the latter pivot-position.
In this paper, we propose a resource allocation algorithm for the downlink of sectorized twodimensional (2-D) OFDMA cellular networks assuming statistical Channel State Information (CSI) and fractional frequency reuse. The proposed algorithm can be implemented in a distributed fashion without the need to any central controlling units. Its performance is analyzed assuming fast fading Rayleigh channels and Gaussian distributed multicell interference. We show that the transmit power of this simple algorithm tends, as the number of users grows to infinity, to the same limit as the minimal power required to satisfy all users' rate requirements i.e., the proposed resource allocation algorithm is asymptotically optimal. As a byproduct of this asymptotic analysis, we characterize a relevant value of the reuse factor that only depends on an average state of the network.
In a companion paper (see Resource Allocation for Downlink Cellular OFDMA Systems: Part I -Optimal Allocation), we characterized the optimal resource allocation in terms of power control and subcarrier assignment, for a downlink sectorized OFDMA system impaired by multicell interference. In our model, the network is assumed to be one dimensional (linear) for the sake of analysis. We also assume that a certain part of the available bandwidth is likely to be reused by different base stations while that the other part of the bandwidth is shared in an orthogonal way between these base stations.The optimal resource allocation characterized in Part I is obtained by minimizing the total power spent by the network under the constraint that all users' rate requirements are satisfied. It is worth noting that when optimal resource allocation is used, any user receives data either in the reused bandwidth or in the protected bandwidth, but not in both (except for at most one pivot-user in each cell). We also proposed an algorithm that determines the optimal values of users' resource allocation parameters.As a matter of fact, the optimal allocation algorithm proposed in Part I requires a large number of operations. In the present paper, we propose a distributed practical resource allocation algorithm with low complexity. We study the asymptotic behavior of both this simplified resource allocation algorithm and the optimal resource allocation algorithm of Part I as the number of users in each cell tends to infinity.Our analysis allows to prove that the proposed simplified algorithm is asymptotically optimal i.e., it achieves the same asymptotic transmit power as the optimal algorithm as the number of users in each cell tends to infinity. As a byproduct of our analysis, we characterize the optimal value of the frequency (1) Supélec,
In this work, a new static relaying protocol is introduced for half duplex single-relay networks, and its performance is studied in the context of communications over slow fading wireless channels. The proposed protocol is based on a Decode or Quantize and Forward (DoQF) approach. In slow fading scenarios, two performance metrics are relevant and complementary, namely the outage probability gain and the Diversity-Multiplexing Tradeoff (DMT). First, we analyze the behavior of the outage probability P o associated with the proposed protocol as the SNR ρ tends to infinity. In this case, we prove that ρ 2 P o converges to a constant ξ. We refer to this constant as the outage gain and we derive its closed-form expression for a general class of wireless channels that includes the Rayleigh and the Rice channels as particular cases. We furthermore prove that the DoQF protocol has the best achievable outage gain in the wide class of half-duplex static relaying protocols. A method for minimizing ξ with respect to the power distribution between the source and the relay, and with respect to the durations of the slots is also provided.Next, we focus on Rayleigh distributed fading channels to derive the DMT associated with the proposed DoQF protocol. Our results show that the DMT of DoQF achieves the 2 by 1 MISO upperbound for multiplexing gains r < 0.25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.