Reversible logic has received a great deal of attention from many researchers over recent years for its enormous potential for application in quantum computing and nanotechnology due to its ability to reduce power consumption, which is the main requirement in low power VLSI design. In this study, first, we have presented new reversible blocks. These circuits can be used for the design of a large and complex combinational circuit. Then, we presented optimised designs for the various reversible components: multiplexers, registers, and shift registers. We will put forward the design and evaluation of optimised reversible division hardware to submit an application of reversible logic design. The comparative results show that the proposed designs individually have less hardware complexity, garbage outputs, constant inputs, quantum cost and significantly better scalability than the existing works. We have presented some lower bounds on the cost-metrics for designing the reversible components of the divider circuit.
Abstract:Reversible logic has emerged as a promising paradigm in various domains, such as low power VLSI design, quantum cellular automata, and nanotechnology-based systems. The arithmetic logic unit (ALU) is one of the main components of any central processing unit. In this paper we propose two new reversible ALUs using elementary quantum gates, with more functions compared to the existing designs. The results show that the proposed designs are better than the existing counterparts in terms of cost-metrics and the number of functions generated. The proposed reversible ALUs can be used in the implementation of quantum computers. All the designs are with nanometric scales.
Reversible logic is one of the indispensable aspects of emerging technologies for reducing physical entropy gain, since reversible circuits do not lose information in the form of internal heat during computation. This paper aimed to initiate constructing parity preserving reversible circuits. A novel parity preserving reversible block, HB is presented. Then a new design of a cost-effective parity preserving reversible full adder/subtractor (PPFA/S) is proposed. Next, we suggested a new parity preserving binary to BCD converter. Finally, we proposed new realization of parity preserving reversible BCD adder. The proposed designs are cost-effective in terms of quantum cost and delay. All the scales are in the NANO-metric area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.