-In this paper, a novel and robust Power System Stabilizer (PSS) is proposed as an effective approach to improve stability in electric power systems. The dynamic performance of proposed PSS has been thoroughly compared with Conventional PSS (CPSS). Both the Real Coded Genetic Algorithm (RCGA) and Particle Swarm Optimization (PSO) techniques are applied to optimum tune the parameter of both the proposed PSS and CPSS in order to damp-out power system oscillations. Due to the high sufficiency of both the RCGA and PSO techniques to solve the very non-linear objective, they have been employed for solution of the optimization problem. In order to verify the dynamic performance of these devices, different conditions of disturbance are taken into account in Single Machine Infinite Bus (SMIB) power system. Moreover, to ensure the robustness of proposed PSS in damping the power system multi-mode oscillations, a Multi Machine (MM) power system under various disturbances are considered as a test system. The results of nonlinear simulation strongly suggest that the proposed PSS significantly enhances the power system dynamic stability in both of the SMIB and MM power system as compared to CPSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.