Several 2 beta-carboxylic acid ester and amide analogues of cocaine and of 3 beta-(4'-substituted phenyl)tropane-2 beta-carboxylic acid were prepared. The binding affinities of these compounds, and of some previously prepared analogues, at the dopamine (DA), norepinephrine (NE), and serotonin (5-HT) transporters were determined. The phenyl esters of 3 beta-(4'-methylphenyl)- and 3 beta-(4'-chlorophenyl)tropane-2 beta-carboxylic acid are highly potent and highly selective for the DA transporter. The isopropyl esters of 3 beta-(4'-chlorophenyl)- and 3 beta-(4'-iodophenyl)tropane-2 beta-carboxylic acid also possess high DA affinity and show significant DA transporter selectivity. Similarly, the phenyl and isopropyl ester analogues of cocaine are much more selective for the DA transporter than cocaine. Tertiary amide analogues of cocaine and of 3 beta-(4'-substituted phenyl)tropane-2 beta-carboxylic acids are more potent inhibitors of radioligand binding at the DA transporter than the primary and secondary amide analogues. In particular, 3 beta-(4'-chlorophenyl)tropane-2 beta-N-morpholinocarboxamide as well as the 3 beta-(4'-chlorophenyl)- and 3 beta-(4'-iodophenyl)tropane-2 beta-N- pyrrolidinocarboxamides possess high affinity and selectivity for the DA transporter. The N,N-dimethylamide cocaine analogue is the most selective cocaine amide derivative for the DA transporter. High correlation between the inhibition of radioligand binding and inhibition of uptake at the DA, NE, and 5-HT transporter was found for a selected group of analogues. Within this group, one compound, the isopropyl ester of 3 beta-(4'-iodophenyl)-tropane-2 beta-carboxylic acid, was found to be more potent in the inhibition of radioligand binding than in the inhibition of DA uptake. Taken together with its high potency and selectivity at the DA transporter, this suggests that this compound may be a lead in the development of a cocaine antagonist.
We have recently reported an influenza virus neuraminidase inhibitor, RWJ-270201 (BCX-1812), a novel cyclopentane derivative discovered through structure-based drug design. In this paper, we compare the potency of three compounds, RWJ-270201, oseltamivir, and zanamivir, against neuraminidase enzymes from various subtypes of influenza. RWJ-270201 effectively inhibited all tested influenza A and influenza B neuraminidases in vitro, with 50% inhibitory concentrations of 0.09 to 1.4 nM for influenza A neuraminidases and 0.6 to 11 nM for influenza B neuraminidases. These values were comparable to or lower than those for oseltamivir carboxylate (GS4071) and zanamivir (GG167). RWJ-270201 demonstrated excellent selectivity (>10,000-fold) for influenza virus neuraminidase over mammalian, bacterial, or other viral neuraminidases. Oral administration of a dosage of 1 mg/kg of body weight/day of RWJ-270201 for 5 days (beginning 4 h preinfection) showed efficacy in the murine model of influenza virus infection as determined by lethality and weight loss protection. RWJ-270201 administered intranasally at 0.01 mg/kg/day in the murine influenza model demonstrated complete protection against lethality, whereas oseltamivir carboxylate and zanamivir at the same dose demonstrated only partial protection. In the delayed-treatment murine influenza model, oral administration of a 10-mg/kg/day dose of RWJ-270201 or oseltamivir (GS4104, a prodrug of GS4071) at 24 h postinfection showed significant protection against lethality (P < 0.001 versus control). However, when the treatment was delayed for 48 h, no significant protection was observed in either drug group. No drug-related toxicity was observed in mice receiving 100 mg/kg/day of RWJ-270201 for 5 days. These efficacy and safety profiles justify further consideration of RWJ-270201 for the treatment and prevention of human influenza.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.