A library of neutral, hydrophobic reagents was synthesized for use as derivatizing agents in order to increase the ion abundance of N-linked glycans in electrospray ionization mass spectrometry (ESI MS). The glycans are derivatized via hydrazone formation and are shown to increase the ion abundance of a glycan standard more than 4-fold. Additionally, the data show that the systematic addition of hydrophobic surface area to the reagent increases the glycan ion abundance, a property that can be further exploited in the analysis of glycans. The results of this study will direct the future synthesis of hydrophobic reagents for glycan analysis using the correlation between hydrophobicity and theoretical non-polar surface area calculation to facilitate the development of an optimum tag for glycan derivatization. The compatibility and advantages of this method are demonstrated by cleaving and derivatizing N-linked glycans from human plasma proteins. The ESI-MS signal for the tagged glycans are shown to be significantly more abundant, and the detection of negatively charged sialylated glycans is enhanced.
The analysis of N-linked glycans by mass spectrometry (MS) has been characterized by low signal-to-noise ratios and high limits of detection due to their hydrophilicity and lack of basic sites able to be protonated. As a result, every step in glycan sample preparation must be thoroughly optimized in order to minimize sample loss, contamination, and analytical variability. Importantly, properties of glycans and their derivatized counterparts must be thoroughly studied in order to exploit certain characteristics for enhancing MS analysis. Herein, the effectiveness of the incorporation of a permanent charge is studied and determined to hamper glycan analysis. Also, a procedure for glycan hydrazone formation is optimized and outlined where a large number of variables were simultaneously analyzed using a fractional factorial design (FFD) in order to determine which conditions affected the reaction efficiency of the hydrazone formation reaction. Finally, the hydrophobic tagging of glycans is shown to be a viable opportunity to further increase the ion abundance of glycans in MS.
Novel tags are used to increase the hydrophobicity of glycans and impart a permanent charge yielding as great as a approximately 5-fold increase in electrospray response from both a standard and complex mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.