Blending lignin as the second most abundant polymer in Nature with nanostructured compounds such as dendritic polymers can not only add value to lignin, but also increase its application in various fields. In this study, softwood Kraft lignin/polyamidoamine dendritic polymer (PAMAM) blends were fabricated by the solution electrospinning to produce bead-free nanofiber mats for the first time. The mats were characterized through scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and thermogravimetry analyses. The chemical intermolecular interactions between the lignin functional groups and abundant amino groups in the PAMAM were verified by FTIR and viscosity measurements. These interactions proved to enhance the mechanical and thermal characteristics of the lignin/PAMAM mats, suggesting their potential applications e.g. in membranes, filtration, controlled release drug delivery, among others.
The investigation of polypropylene (PP)/clay nanocomposites has received considerable scientific and technological attention during the last decades due to their good mechanical and barrier properties. In the present article, the effects of adding Cloisite15A (C15A) nanoclay in polypropylene (PP) were investigated. PP nanocomposites were prepared by a direct melt mixing method. For better dispersion of C15A, 30 wt% of nanoclay masterbatch was first prepared by melt mixing of PP matrix and acrylic acid grafted PP oligomer (PP- g-AA) in a compounder, before being used to produce nanocomposites with 2 and 5 wt% of C15A. The aim of this work was to used nanoclay filled nanocomposites with suitable properties for cable application like good flame-retardant property; improve dye-ability and resilience of polypropylene. The XRD results indicated an intercalated layer structure for nanocomposites, The SEM examination showed satisfactory dispersion of nanoclay in 2 wt% of C15A and some degree of agglomeration in 5 wt% of C15A. DSC analysis indicated that C15A acts as a nucleating agent and increases crystallinity in the nanocomposite. TGA showed with increasing nanoclay, heat resistance was improved and degradation temperatures increased. Limiting oxygen index (LOI) tests showed increased flame retardancy from 25% for neat polypropylene t0 32.2% for nanocomposites of 5 wt% of C15A. The tensile modulus was improved from 423 MPa for neat polypropylene to 474 MPa for nanocomposites with 5 wt% of C15A. This result indicates that increasing C15A content had a suitable effect on the tensile properties. Melt spinning investigation on low oriented yarn (LOY), draw textured yarn (DTY), and fully drawn yarn (FDY) of 2 wt% C15A nanocomposite showed a reduction of linear density for FDY and an increase of the shrinkage. Furthermore, the obtained results for the improvement of dye-ability and compression resilience showed that PP/C15A is appropriate for textile products.
Blending lignin as the second most abundant polymer in nature with nanostructured compounds such as dendritic polymers will not only add value to lignin, but also increase its application in various fields. In this study, softwood Kraft lignin/polyamidoamine dendritic polymer (PAMAM) blends were fabricated by solution electrospinning method to produce bead-free nanofiber mats. The mats were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), zeta potential, and thermogravimetry analysis (TGA). The chemical intermolecular interactions between lignin functional groups and abundant amino groups in PAMAM were investigated by FTIR and viscosity measurement. These interactions enhanced the mechanical and thermal characteristics of lignin/PAMAM mats, providing further potential applications at industry level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.