Abstract:The impacts of the urban heat island (UHI) phenomenon on energy consumption, air quality, and human health have been widely studied and described. Mitigation strategies have been developed to fight the UHI and its detrimental consequences. A potential countermeasure is the increase of urban albedo by using cool materials. Cool materials are highly reflective materials that can maintain lower surface temperatures and thus can present an effective solution to mitigate the UHI. Terni's proven record of high temperatures along with related environmental and comfort issues in its urban areas have reflected the local consequences of global warming. On the other hand, it promoted integrated actions by the government and research institutes to investigate solutions to mitigate the UHI effects. In this study, the main goal is to investigate the effectiveness of albedo increase as a strategy to tackle the UHI, by using the Weather Research and Forecasting (WRF) mesoscale model to simulate the urban climate of Terni (Italy). Three different scenarios through a summer heat wave in the summer of 2015 are analyzed. The Base Scenario, which simulates the actual conditions of the urban area, is the control case. In the Albedo Scenario (ALB Scenario), the albedo of the roof, walls and road of the whole urban area is increased. In the Albedo-Industrial Scenario (ALB-IND Scenario), the albedo of the roof, walls and road of the area occupied by the main industrial site of Terni, located in close proximity to the city center, is increased. The simulation results show that the UHI is decreased up to 2 • C both at daytime and at nighttime in the ALB and in ALB-IND Scenarios. Peak temperatures in the urban area can be decreased by 1 • C at daytime, and by about 2 • C at nighttime. Albedo increase in the area of interest might thus represent an opportunity to decrease the UHI effect and its consequences.
Clay roof tiles are widely used as roofing materials because of their good mechanical and esthetical properties. The exposure to atmospheric agents and, most of all, to pollutants and smog affects negatively the solar reflectance of a tile surface. The aim of this study is to analyze the influence of aging on the solar reflectance of clay roof tiles. We studied samples provided by manufacturer in Greece and USA. Samples were coated with either organic or inorganic coatings. Natural aging processes were used for samples with inorganic coating, and artificial aging simulation was performed on all samples. Samples were naturally aged in a test farm in Arizona, with an exposure time of three years. In artificial aging processes, the surface of the tiles was subjected to the application of two different mixtures simulating exposure to (i) Arizona weathering agents such as clay, salts and soot and (ii) Arizona, Florida and Ohio weathering agents through an average mixture made by clay, salts, particulate organic matter and soot. The amount of soiling mixture deposited on the surface of the samples was aimed at reproducing a three-year exposure. Soiled samples were subjected to air blowing and rinsing under running water to simulate the wind and rain effects, respectively. The effects of both natural aging and artificial soiling on the surface reflectivity of the clay roof tiles were assessed in the ultraviolet–visible–near infrared range (range from 300 to 2500 nm). The two different soiling conditions were found to affect significantly the solar reflectance of the samples, in particular the samples soiled with the average mixture present a decrease up to 0.20, while Arizona weathering condition affects the solar reflectance up to 0.05, and neither air blowing nor rinsing seem to permit a significant recovery of the surface properties. All solar reflectance measurements were computed by averaging the spectral reflectivity weighted by the air-mass 1 global horizontal solar spectral irradiance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.