X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.
Acinetobacter baumannii is an important opportunistic pathogen that causes major public health concern especially in hospitalized patients due to the acquisition of multidrug resistance (MDR). The aim of this study was to systematically review published data about the prevalence rate of MDR-A. baumannii (MDR-AB) from different parts of Iran and provide an overall relative frequency (RF) using meta-analysis. All available national and international databanks were searched to find published studies up to June 2016. Quality of studies was assessed by STROB and PRISMA forms. Because of the significant heterogeneity observed, random effects model was used to combine the results. STATA SE version 11.2 was used for statistical analysis. Out of the 9646 results, 37 suitable articles were extracted according to inclusion and exlusion criteria. The pooled prevalence of MDR-AB was estimated 72% annually. Relative frequency of MDR-AB in different studies varied from 22.8 to 100%. Since the prevalence of MDR-AB is higher than many other countries, measures should be taken to keep the emergence and transmission of these strains to a minimum.
These findings support the use of AuNP as a potent sonosensitizing agent with the potential to use the thermal and mechanical effects of ultrasound so as to cause damage to the focused tumor site, resulting in an improved antitumor efficacy.
Many combined therapies have been proposed to enhance radiotherapy outcome, but they have several limitations. As a new feasible strategy, combination of radiotherapy with bacteria showed a significant positive impact on the tumor treatment and metastasis inhibition. Although probiotic bacteria and radiotherapy alone can be effective in the treatment of different cancers, the combination of these two therapies seems to enhance therapeutic outcome and is cost-effective. Bacterial cells can act as therapeutic/gene/drug delivery vehicles as well as theranostic agents. In this communication, we reviewed current evidences, studies, suggestions, and future-based directions on combination of radiotherapy and bacteria. In another sections, an overview on tumor hypoxia, bacteria in cancer therapy, and combination of radiotherapy and bacteria is presented. A brief overview on trials and animal studies which used bacteria to protect normal tissues against radiotherapy-induced complications is also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.