There is a critical need for effective infection prevention and control measures and strict use of antibiotics in the world to control the rise and spread of colistin resistance.
Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa , Acinetobacter baumannii , Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.
Successful treatment of cancer remains a challenge, due to the unique pathophysiology of solid tumors, and the predictable emergence of resistance. Traditional methods for cancer therapy including radiotherapy, chemotherapy, and immunotherapy all have their own limitations. A novel approach is bacteriotherapy, either used alone, or in combination with conventional methods, has shown a positive effect on regression of tumors and inhibition of metastasis. Bacteria‐assisted tumor‐targeted therapy used as therapeutic/gene/drug delivery vehicles has great promise in the treatment of tumors. The use of bacteria only, or in combination with conventional methods was found to be effective in some experimental models of cancer (tumor regression and increased survival rate). In this article, we reviewed the major advantages, challenges, and prospective directions for combinations of bacteria with conventional methods for tumor therapy.
Background:Candidiasis is one of the most prevalent and important opportunistic fungal infections of the oral cavity caused by Candida yeast species like Candida albicans, C. glabrata, and C. krusei. In addition, several bacteria can cause oral infections. The inhibition of microbial biofilm is the best way to prevent oral infections.Objectives:The aim of the present study is to evaluate the antifungal, antimicrobial, and anti-biofilm properties of ginger (Zingiber officinale) extract against Candida species and some bacterial pathogens and the extract’s effects on biofilm formation.Materials and Methods:Ginger ethanolic extract as a potential mouthwash was used to evaluate its effect against fungi and bacteria using the microdilution method, and biofilm was evaluated using the crystal violet staining method and dead/alive staining. MTT assay was used to evaluate the possible cytotoxicity effects of the extract.Results:The minimum inhibitory concentrations (MICs) of ginger extract for evaluated strains were 40, 40, 20, 20, 20, 20, 10, and 5 mg/mL for Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, Acinetobacter baumannii, C. albicans, and C. krusei, respectively. Ginger extract successfully inhibited biofilm formation by A. baumannii, B. cereus, C. krusei, and C. albicans. MTT assay revealed no significant reduction in cell viability after 24 hours. The minimum inhibitory biofilm concentrations (MIBCs) of ginger extract for fungi strains (C. krusei and C. albicans) were greater than those of fluconazole and nystatin (P = 0.000).Conclusions:The findings of the present study indicate that ginger extract has good antifungal and antibiofilm formation by fungi against C. albicans and C. Krusei. Concentrations between 0.625 mg/mL and 5 mg/mL had the highest antibiofilm and antifungal effects. Perhaps, the use of herbal extracts such as ginger represents a new era for antimicrobial therapy after developing antibiotic resistance in microbes.
Linezolid, an oxazolidinone antimicrobial agent that acts by inhibiting protein synthesis in a unique fashion, is used in the treatment of community-acquired pneumonia, skin and soft-tissue infections and other infections caused by Gram-positive bacteria including VRE and methicillin-resistant staphylococci. Currently, linezolid resistance among these pathogens remains low, commonly <1.0%, although the prevalence of antibiotic resistance is increasing in many countries. Therefore, the development of resistance by clinical isolates should prompt increased attention of clinical laboratories to routinely perform linezolid susceptibility testing for this important agent and should be taken into account when considering its therapeutic use. Considering the importance of linezolid in the treatment of infections caused by Gram-positive bacteria, this review was undertaken to optimize the clinical use of this antibiotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.