Microsurgery is a precise surgical skill that requires an extensive training period and the supervision of expert instructors. The classical training schemes in microsurgery have started with multiday experimental courses on the rat model. These courses have offered a low threat supervised high fidelity laboratory setting in which students can steadily and rapidly progress. This simulated environment allows students to make and recognise mistakes in microsurgery techniques and thus shifts any related risks of the early training period from the operating room to the lab. To achieve a high level of skill acquisition before beginning clinical practice, students are trained on a comprehensive set of exercises the rat model can uniquely provide, with progressive complexity as competency improves. This paper presents the utility of the classical rat model in three of the earliest microsurgery training centres and the new prospects that this versatile and expansive training model offers.
In the last decade surgical training is being revolutionized by two novel concepts that have been introduced to almost all branches of surgery including and most recently to microsurgery. These two concepts are: objective assessments of surgical skills and the nurturing of surgical skills in a simulation laboratory setting. Acquiring surgical skills in the laboratory setting can help move the microsurgical learning curve from the patient to the laboratory and this will in turn improve patient safety. In order to optimize microsurgical training through a competency based training programme, it is imperative for microsurgical educators to understand microsurgical skill acquisition. This requires accurate objective assessment tools that can define and quantify microsurgical competency. This article aims to review the current literature on the various objective assessment tools adapted for microsurgery and attempt to identify the gaps that need to be addressed by research in microsurgical education to establish the ideal objective assessment tool.
With significant improvements in success rates for free flap reconstruction of the head and neck, attention has turned to donor site morbidity associated with osteocutaneous free flaps. In this review, we address the morbidity associated with harvest of the four most commonly used osteocutaneous flaps; the free fibula flap, the scapula flap, the iliac crest flap and the radial forearm flap. A comprehensive literature search was performed to identify articles relevant to donor site morbidity for these flaps. We assessed morbidity in terms of incidence of delayed healing, chronic pain, aesthetic outcomes, site specific complications and patient satisfaction/quality of life. Weighted means were calculated when sufficient studies were available for review. The radial forearm and free fibula flaps are associated with high rates of delayed healing of approximately 20% compared to the scapular (<10%) and iliac flaps (5%). The radial forearm flap has higher rates of chronic pain (16.7%) and dissatisfaction with scar appearance (33%). For the majority of these patients harvest of one of these four osteocutaneous does not limit daily function at long-term follow-up. The scapular osteocutaneous flap is associated with the lowest relative morbidity and should be strongly considered when the recipient defect allows. The radial forearm is associated with higher morbidity in terms of scarring, fractures, chronic pain and wrist function and should not be considered as first choice when other flap options are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.