We investigate the problem of achieving robust control of hand prostheses by the electromyogram (EMG) of transradial amputees in the presence of variable force levels, as these variations can have a substantial impact on the robustness of the control of the prostheses. We also propose a novel set of features that aim at reducing the impact of force level variations on the prosthesis controlled by amputees. These features characterize the EMG activity by means of the orientation between a set of spectral moments descriptors extracted from the EMG signal and a nonlinearly mapped version of it. At the same time, our feature extraction method processes the EMG signals directly from the time-domain to reduce computational cost. The performance of the proposed features is tested on EMG data collected from nine transradial amputees performing six classes of movements each with three force levels. Our results indicate that the proposed features can achieve significant reductions in classification error rates in comparison to other well-known feature extraction methods, achieving improvements of ≈ 6% to 8% in the average classification performance across all subjects and force levels, when training with all forces.
A method for the classification of finger movements for dexterous control of prosthetic hands is proposed. Previous research was mainly devoted to identify hand movements as these actions generate strong electromyography (EMG) signals recorded from the forearm. In contrast, in this paper, we assess the use of multichannel surface electromyography (sEMG) to classify individual and combined finger movements for dexterous prosthetic control. sEMG channels were recorded from ten intact-limbed and six below-elbow amputee persons. Offline processing was used to evaluate the classification performance. The results show that high classification accuracies can be achieved with a processing chain consisting of time domain-autoregression feature extraction, orthogonal fuzzy neighborhood discriminant analysis for feature reduction, and linear discriminant analysis for classification. We show that finger and thumb movements can be decoded accurately with high accuracy with latencies as short as 200 ms. Thumb abduction was decoded successfully with high accuracy for six amputee persons for the first time. We also found that subsets of six EMG channels provide accuracy values similar to those computed with the full set of EMG channels (98% accuracy over ten intact-limbed subjects for the classification of 15 classes of different finger movements and 90% accuracy over six amputee persons for the classification of 12 classes of individual finger movements). These accuracy values are higher than previous studies, whereas we typically employed half the number of EMG channels per identified movement.
The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.