Sequestering CO2 in the form of carbon-based liquid fuels would provide both a convenient and sustainable form of energy for practical use as well as mitigate the effects of global warming and climate change.
Fluctuations in manufactured integrated circuit parameters may dramatically reduce the parametric yield. Yield maximization can be formulated as an unconstrained optimization problem in nominal parameter values, which is known as design centering. The high expense of yield evaluations, the absence of any gradient information, and the presence of some numerical noise obstruct the use of the traditional derivative-based optimization methods. In this article, a novel design centering algorithm is presented, which consists of a non-derivative unconstrained optimizer coupled with a variance reduction estimator. The used optimizer combines a trust region mechanism with quadratic interpolation and provides efficient use of yield evaluations. The stratified sampling technique is used to develop a lower variance yield estimator that reduces the number of circuit simulations required to reach a desired accuracy level. Numerical and practical circuit examples are used to demonstrate the efficiency of the proposed algorithm with respect to other methods in the same field.
In this paper, a novel nano antenna with two radiation modes is introduced. The structure of this nano antenna consists of a ring coupler and two patch antennas placed on a SiO 2 substrate. The direction of the main lobe of the radiation pattern of this nano antenna can be adjusted to be either in the broadside or the endfire direction. The proposed nano antenna is optimized to minimize the losses and to maximize the radiation efficiency in addition to achieve maximum discrimination between the two desired directions of the main beam. In optimizing the proposed structure, the computationally expensive fullwave electromagnetic simulation is replaced by cheaper surrogate models, which are kriging models. Two optimization techniques, namely multi-objective particle swarm with preference ranking organization METHod for enrichment evaluations method and design centering using the normed distances, are used to obtain the optimal values of the design parameters. A convergence test is performed to ensure the validity of the obtained simulation results. A sensitivity analysis is performed to show how the manufacturing tolerance in each design parameter is affecting the performance of the proposed nano antenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.