BackgroundThe Clinical Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines are the most popular breakpoint guidelines used in antimicrobial susceptibility testing worldwide. The EUCAST guidelines are freely available to users while CLSI is available for non-members as a package of three documents for US $500 annually. This is prohibitive for clinical microbiology laboratories in resource poor settings. We set out to compare antibiotic susceptibility determined by the two guidelines to determine whether adoption of EUCAST guidelines would significantly affect our susceptibility patterns.MethodsWe reviewed minimum inhibitory concentrations (MIC) of various antibiotics routinely reported for Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) isolates from an automated microbiology identification system (VITEK-2) at the Aga Khan University Hospital Nairobi’s Pathology department. These MICs were then analyzed using both CLSI 2015 and EUCAST 2015 guidelines and classified as resistant, intermediate or susceptible. We compared the susceptibility and agreement between the CLSI and EUCAST categorizations.ResultsSusceptibility data from a total of 5165 E. coli, 1103 S. aureus and 532 P. aeruginosa isolates were included. The concordance rates of the two guidelines for E. coli, S. aureus and P. aeruginosa ranged from 78.2 to 100 %, 94.6 to 100 % and 89.1 to 95.5 % respectively. The kappa statistics for E. coli MICs revealed perfect agreement between CLSI and EUCAST for cefotaxime, ceftriaxone and trimethoprim–sulfamethoxazole, almost perfect agreement for ampicillin, ciprofloxacin, cefuroxime, gentamicin and ceftazidime, substantial agreement for meropenem, moderate agreement for cefepime and amoxicillin-clavulanate, fair agreement for nitrofurantoin and poor agreement for amikacin. For S. aureus the kappa statistics revealed perfect agreement for penicillin, trimethoprim–sulfamethoxazole, levofloxacin, oxacillin, linezolid and vancomycin, almost perfect agreement for clindamycin, erythromycin and tetracycline and moderate agreement for gentamicin. For P. aeruginosa the kappa analysis revealed moderate to almost perfect agreement for all the anti-pseudomonal antibiotics.ConclusionThe results show comparable antibiotic susceptibility patterns between CLSI and EUCAST breakpoints. Given that EUCAST guidelines are freely available, it makes it easier for laboratories in resource poor settings to have an updated and readily available reference for interpreting antibiotic susceptibilities.
BackgroundMALDI-TOF MS is an analytical method that has recently become integral in the identification of microorganisms in clinical laboratories. It relies on databases that majorly employ pattern recognition or fingerprinting. Biomarker based databases have also been developed and there is optimism that these may be superior to pattern recognition based databases. This study compared the performance of ribosomal biomarker based MALDI-TOF MS and conventional methods in the identification of selected bacteria and yeast.MethodsThe study was a cross sectional study identifying clinically relevant bacteria and yeast isolated from varied clinical specimens submitted to a clinical laboratory. The identification of bacteria using conventional Vitek 2™ automated system, serotyping and MALDI-TOF MS was performed as per standard operating procedures. Comparison of sensitivities were then carried out using Pearson Chi-Square test and p-value of <0.05 was considered statistically significant. Secondary outcomes analyzed included the major and minor error rates.ResultsOf the 383 isolates MALDI-TOF MS and conventional methods identified 97.6 and 95.7% (p = 0.231) to the genus level and 97.4 and 88.0% (p = 0.000) to the species level respectively. Biomarker based MALDI-TOF MS was significantly superior to Vitek 2™ in the identification of Gram negative bacteria and Gram positive bacteria to the species level. For the Gram positive bacteria, significant difference was observed in the identification of Coagulase negative Staphylococci (p = 0.000) and Enterococcus (p = 0.008). Significant difference was also observed between serotyping and MALDI-TOF MS (p = 0.005) and this was attributed to the lack of identification of Shigella species by MALDI-TOF MS. There was no significant difference observed in the identification of yeast however some species of Candida were unidentified by MALDI-TOF MS.ConclusionBiomarker based MALDI-TOF MS had good performance in a clinical laboratory setting with high sensitivities in the identification of clinically relevant microorganisms.
Background Klebsiella spp. are opportunistic pathogens which can cause severe infections, are often multi-drug resistant and are a common cause of hospital-acquired infections. Multiple new Klebsiella species have recently been described, yet their clinical impact and antibiotic resistance profiles are largely unknown. We aimed to explore Klebsiella group- and species-specific clinical impact, antimicrobial resistance (AMR) and virulence. Methods We analysed whole-genome sequence data of a diverse selection of Klebsiella spp. isolates and identified resistance and virulence factors. Using the genomes of 3594 Klebsiella isolates, we predicted the masses of 56 ribosomal subunit proteins and identified species-specific marker masses. We then re-analysed over 22,000 Matrix-Assisted Laser Desorption Ionization - Time Of Flight (MALDI-TOF) mass spectra routinely acquired at eight healthcare institutions in four countries looking for these species-specific markers. Analyses of clinical and microbiological endpoints from a subset of 957 patients with infections from Klebsiella species were performed using generalized linear mixed-effects models. Results Our comparative genomic analysis shows group- and species-specific trends in accessory genome composition. With the identified species-specific marker masses, eight Klebsiella species can be distinguished using MALDI-TOF MS. We identified K. pneumoniae (71.2%; n = 12,523), K. quasipneumoniae (3.3%; n = 575), K. variicola (9.8%; n = 1717), “K. quasivariicola” (0.3%; n = 52), K. oxytoca (8.2%; n = 1445), K. michiganensis (4.8%; n = 836), K. grimontii (2.4%; n = 425) and K. huaxensis (0.1%; n = 12). Isolates belonging to the K. oxytoca group, which includes the species K. oxytoca, K. michiganensis and K. grimontii, were less often resistant to 4th-generation cephalosporins than isolates of the K. pneumoniae group, which includes the species K. pneumoniae, K. quasipneumoniae, K. variicola and “K. quasivariicola” (odds ratio = 0.17, p < 0.001, 95% confidence interval [0.09,0.28]). Within the K. pneumoniae group, isolates identified as K. pneumoniae were more often resistant to 4th-generation cephalosporins than K. variicola isolates (odds ratio = 2.61, p = 0.003, 95% confidence interval [1.38,5.06]). K. oxytoca group isolates were found to be more likely associated with invasive infection to primary sterile sites than K. pneumoniae group isolates (odds ratio = 2.39, p = 0.0044, 95% confidence interval [1.05,5.53]). Conclusions Currently misdiagnosed Klebsiella spp. can be distinguished using a ribosomal marker-based approach for MALDI-TOF MS. Klebsiella groups and species differed in AMR profiles, and in their association with invasive infection, highlighting the importance for species identification to enable effective treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.