Automatic diagnosis and monitoring of Alzheimer's disease can have a significant impact on society as well as the well-being of patients. The part of the brain cortex that processes language abilities is one of the earliest parts to be affected by the disease. Therefore, detection of Alzheimer's disease using speech-based features is gaining increasing attention. Here, we investigated an extensive set of features based on speech prosody as well as linguistic features derived from transcriptions of Turkish conversations with subjects with and without Alzheimer's disease. Unlike most standardized tests that focus on memory recall or structured conversations, spontaneous unstructured conversations are conducted with the subjects in informal settings. Age-, education-, and gender-controlled experiments are performed to eliminate the effects of those three variables. Experimental results show that the proposed features extracted from the speech signal can be used to discriminate between the control group and the patients with Alzheimer's disease. Prosodic features performed significantly better than the linguistic features. Classification accuracy over 80% was obtained with three of the prosodic features, but experiments with feature fusion did not further improve the classification performance.
This paper presents the first version of a speaker verification spoofing and anti-spoofing database, named SAS corpus. The corpus includes nine spoofing techniques, two of which are speech synthesis, and seven are voice conversion. We design two protocols, one for standard speaker verification evaluation, and the other for producing spoofing materials. Hence, they allow the speech synthesis community to produce spoofing materials incrementally without knowledge of speaker verification spoofing and anti-spoofing. To provide a set of preliminary results, we conducted speaker verification experiments using two state-of-the-art systems. Without any anti-spoofing techniques, the two systems are extremely vulnerable to the spoofing attacks implemented in our SAS corpus.
In this paper, we present a systematic study of the vulnerability of automatic speaker verification to a diverse range of spoofing attacks. We start with a thorough analysis of the spoofing effects of five speech synthesis and eight voice conversion systems, and the vulnerability of three speaker verification systems under those attacks. We then introduce a number of countermeasures to prevent spoofing attacks from both known and unknown attackers. Known attackers are spoofing systems whose output was used to train the countermeasures, whilst an unknown attacker is a spoofing system whose output was not available to the countermeasures during training. Finally, we benchmark automatic systems against human performance on both speaker verification and spoofing detection tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.