While biometric authentication has advanced significantly in recent years, evidence shows the technology can be susceptible to malicious spoofing attacks. The research community has responded with dedicated countermeasures which aim to detect and deflect such attacks. Even if the literature shows that they can be effective, the problem is far from being solved; biometric systems remain vulnerable to spoofing. Despite a growing momentum to develop spoofing countermeasures for automatic speaker verification, now that the technology has matured sufficiently to support mass deployment in an array of diverse applications, greater effort will be needed in the future to ensure adequate protection against spoofing. This article provides a survey of past work and identifies priority research directions for the future. We summarise previous studies involving impersonation, replay, speech synthesis and voice conversion spoofing attacks and more recent efforts to develop dedicated countermeasures. The survey shows that future research should address the lack of standard datasets and the over-fitting of existing countermeasures to specific, known spoofing attacks.
Abstract-Concerns regarding the vulnerability of automatic speaker verification (ASV) technology against spoofing can undermine confidence in its reliability and form a barrier to exploitation. The absence of competitive evaluations and the lack of common datasets has hampered progress in developing effective spoofing countermeasures. This paper describes the ASV Spoofing and Countermeasures (ASVspoof) initiative, which aims to fill this void. Through the provision of a common dataset, protocols, and metrics, ASVspoof promotes a sound research methodology and fosters technological progress. This paper also describes the ASVspoof 2015 dataset, evaluation, and results with detailed analyses. A review of post-evaluation studies conducted using the same dataset illustrates the rapid progress stemming from ASVspoof and outlines the need for further investigation. Priority future research directions are presented in the scope of the next ASVspoof evaluation planned for 2017.
We introduce the Merlin speech synthesis toolkit for neural network-based speech synthesis. The system takes linguistic features as input, and employs neural networks to predict acoustic features, which are then passed to a vocoder to produce the speech waveform. Various neural network architectures are implemented, including a standard feedforward neural network, mixture density neural network, recurrent neural network (RNN), long short-term memory (LSTM) recurrent neural network, amongst others. The toolkit is Open Source, written in Python, and is extensible. This paper briefly describes the system, and provides some benchmarking results on a freelyavailable corpus.
Deep neural networks (DNNs) use a cascade of hidden representations to enable the learning of complex mappings from input to output features. They are able to learn the complex mapping from textbased linguistic features to speech acoustic features, and so perform text-to-speech synthesis. Recent results suggest that DNNs can produce more natural synthetic speech than conventional HMM-based statistical parametric systems. In this paper, we show that the hidden representation used within a DNN can be improved through the use of Multi-Task Learning, and that stacking multiple frames of hidden layer activations (stacked bottleneck features) also leads to improvements. Experimental results confirmed the effectiveness of the proposed methods, and in listening tests we find that stacked bottleneck features in particular offer a significant improvement over both a baseline DNN and a benchmark HMM system.
An increasing number of independent studies have confirmed the vulnerability of automatic speaker verification (ASV) technology to spoofing. However, in comparison to that involving other biometric modalities, spoofing and countermeasure research for ASV is still in its infancy. A current barrier to progress is the lack of standards which impedes the comparison of results generated by different researchers. The ASVspoof initiative aims to overcome this bottleneck through the provision of standard corpora, protocols and metrics to support a common evaluation. This paper introduces the first edition, summaries the results and discusses directions for future challenges and research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.