Abstract-Speaker diarization is the task of determining "who spoke when?" in an audio or video recording that contains an unknown amount of speech and also an unknown number of speakers. Initially, it was proposed as a research topic related to automatic speech recognition, where speaker diarization serves as an upstream processing step. Over recent years, however, speaker diarization has become an important key technology for many tasks, such as navigation, retrieval, or higher-level inference on audio data. Accordingly, many important improvements in accuracy and robustness have been reported in journals and conferences in the area. The application domains, from broadcast news, to lectures and meetings, vary greatly and pose different problems, such as having access to multiple microphones and multimodal information or overlapping speech. The most recent review of existing technology dates back to 2006 and focuses on the broadcast news domain. In this paper we review the current state-of-the-art, focusing on research developed since 2006 that relates predominantly to speaker diarization for conference meetings. Finally, we present an analysis of speaker diarization performance as reported through the NIST Rich Transcription evaluations on meeting data and identify important areas for future research.
While biometric authentication has advanced significantly in recent years, evidence shows the technology can be susceptible to malicious spoofing attacks. The research community has responded with dedicated countermeasures which aim to detect and deflect such attacks. Even if the literature shows that they can be effective, the problem is far from being solved; biometric systems remain vulnerable to spoofing. Despite a growing momentum to develop spoofing countermeasures for automatic speaker verification, now that the technology has matured sufficiently to support mass deployment in an array of diverse applications, greater effort will be needed in the future to ensure adequate protection against spoofing. This article provides a survey of past work and identifies priority research directions for the future. We summarise previous studies involving impersonation, replay, speech synthesis and voice conversion spoofing attacks and more recent efforts to develop dedicated countermeasures. The survey shows that future research should address the lack of standard datasets and the over-fitting of existing countermeasures to specific, known spoofing attacks.
Abstract-Concerns regarding the vulnerability of automatic speaker verification (ASV) technology against spoofing can undermine confidence in its reliability and form a barrier to exploitation. The absence of competitive evaluations and the lack of common datasets has hampered progress in developing effective spoofing countermeasures. This paper describes the ASV Spoofing and Countermeasures (ASVspoof) initiative, which aims to fill this void. Through the provision of a common dataset, protocols, and metrics, ASVspoof promotes a sound research methodology and fosters technological progress. This paper also describes the ASVspoof 2015 dataset, evaluation, and results with detailed analyses. A review of post-evaluation studies conducted using the same dataset illustrates the rapid progress stemming from ASVspoof and outlines the need for further investigation. Priority future research directions are presented in the scope of the next ASVspoof evaluation planned for 2017.
The ASVspoof initiative was created to promote the development of countermeasures which aim to protect automatic speaker verification (ASV) from spoofing attacks. The first community-led, common evaluation held in 2015 focused on countermeasures for speech synthesis and voice conversion spoofing attacks. Arguably, however, it is replay attacks which pose the greatest threat. Such attacks involve the replay of recordings collected from enrolled speakers in order to provoke false alarms and can be mounted with greater ease using everyday consumer devices. ASVspoof 2017, the second in the series, hence focused on the development of replay attack countermeasures. This paper describes the database, protocols and initial findings. The evaluation entailed highly heterogeneous acoustic recording and replay conditions which increased the equal error rate (EER) of a baseline ASV system from 1.76% to 31.46%. Submissions were received from 49 research teams, 20 of which improved upon a baseline replay spoofing detector EER of 24.77%, in terms of replay/non-replay discrimination. While largely successful, the evaluation indicates that the quest for countermeasures which are resilient in the face of variable replay attacks remains very much alive.
Efforts to develop new countermeasures in order to protect automatic speaker verification from spoofing have intensified over recent years. The ASVspoof 2015 initiative showed that there is great potential to detect spoofing attacks, but also that the detection of previously unforeseen spoofing attacks remains challenging. This paper argues that there is more to be gained from the study of features rather than classifiers and introduces a new feature for spoofing detection based on the constant Q transform, a perceptually-inspired time-frequency analysis tool popular in the study of music. Experimental results obtained using the standard ASVspoof 2015 database show that, when coupled with a standard Gaussian mixture model-based classifier, the proposed constant Q cepstral coefficients (CQCCs) outperform all previously reported results by a significant margin. In particular, those for a subset of unknown spoofing attacks (for which no matched training data was used) is 0.46%, a relative improvement of 72% over the best, previously reported results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.