SUMMARYWith the advancement of the manufacturing technologies to produce new generation analog=digital communication systems, immitance data modelling has gained renewed importance in the literature. Speciÿcally, models are utilized for behaviour characterization, simulation of physical devices or to design sub-systems with active and passive solid-state devices. Therefore, in this paper, new computer aided tools are presented to model one port immitance data by means of linear interpolation techniques. The basic philosophy of the new modelling tools is based on the numerical decomposition of the immitance data into its minimum and Foster parts. Computer algorithms are presented to model the minimum and the Foster parts of the given immitance data. Implementations of these algorithms are exhibited by means of examples. Depending on the application, modelling tools based on linear interpolation techniques may present 'computational and practical' advantages over the existing interpolation techniques, non-linear curve ÿttings or regression methods. It is expected that the new modelling tools will be utilized to provide initial circuit topologies to the commercially available analysis=simulation and design packages.
It is a common practice to utilize commercially available software tools to design matching networks for wireless communication systems. Most of these tools require a properly selected matching network topology with good initial element values. Therefore, in this paper, a practical method is presented to generate matching networks with initial element values. In the implementation process of the proposed method first, the driving point immitance data for the matching network is obtained in a straight forward manner without optimization. Then, it is modeled as a realizable bounded-real input reflection coefficient which in turn yields the desired matching network with reasonable element values. Eventually, the initial design is improved by optimizing the performance of the matched system employing the commercially available computer-aided design (CAD) packages. An example is given to illustrate the utilization of the proposed method. It is shown that new method provides excellent results as a front-end when utilized together with CAD tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.