It is a common practice to utilize commercially available software tools to design matching networks for wireless communication systems. Most of these tools require a properly selected matching network topology with good initial element values. Therefore, in this paper, a practical method is presented to generate matching networks with initial element values. In the implementation process of the proposed method first, the driving point immitance data for the matching network is obtained in a straight forward manner without optimization. Then, it is modeled as a realizable bounded-real input reflection coefficient which in turn yields the desired matching network with reasonable element values. Eventually, the initial design is improved by optimizing the performance of the matched system employing the commercially available computer-aided design (CAD) packages. An example is given to illustrate the utilization of the proposed method. It is shown that new method provides excellent results as a front-end when utilized together with CAD tools.
Decoupling and matching networks may be used to improve the performance of compact antenna arrays where mutual radiator coupling has caused a degradation of the diversity capabilities. A popular network consists of a 180deg rat-race directional coupler, which decouples the antenna ports, followed by impedance matching networks at each port. Researchers, however, usually neglect the presence of losses both within the antenna array and the decoupling and matching network. For this reason, we have built various narrowband and broadband matching networks and compare their performances with the help of calibrated far-field measurement data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.