In this chapter, we propose the analysis of the maximum power point (MPP) of photovoltaic panels (PV) in a renewable energy application. From the current–voltage characteristics, we deduced the MPP of a PV panel and specified the use of a power block (DC/DC converter) controlled by an MPPT control. In the case of an MPPT control of type perturb and observe, we realized the photovoltaic system that heats a photovoltaic solar cooker, taking into account this MPPT command. The experimentation of this application, during a sunny day, shows that the MPPT control carries out its role correctly, such as optimal operation of the PV panels and heating of the cooker by the maximum power supplied by the PV panels. The analysis of all the results shows an excellent agreement between the experiment and the simulation of the operation of the photovoltaic system which made it possible to operate the photovoltaic panels around their MPP, over the course of the sun. Under these conditions, the efficiency of the proposed DC/DC converter, with a power of 500 Wp, is of the order of 97%.
In this paper, The researchers present the conception, the realization and the experimentation of a photovoltaic (PV) system provided with a sun tracker reliable and low cost operating at dual axis. The tracker's role is to orient the PV generator, whose weight is about 9 Kg, perpendicular to the sun with very good accuracy. This tracking is based on the use of four LDR sensors, which detect the intensity of light scattered by a sun processing unit, from command and control (UTCC), which manages all of the sun tracking tasks (the end detection of parcours, regulation of the power supplied by the PV panels (Command MPPT), ...). The results obtained show a significant improvement of the energy produced, compared to conventional PV installations where generators are fixed and oriented south at a tilt 45°. During a day of operation, improvement could reach 41% and consumption of the tracking does not exceed 0.55% of the energy production produced by the PV generator (an improvement of 5 % compared to existing trackers).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.