Energy is considered the most costly and scarce resource, and demand for it is increasing daily. Globally, a significant amount of energy is consumed in residential buildings, i.e., 30–40% of total energy consumption. An active energy prediction system is highly desirable for efficient energy production and utilization. In this paper, we have proposed a methodology to predict short-term energy consumption in a residential building. The proposed methodology consisted of four different layers, namely data acquisition, preprocessing, prediction, and performance evaluation. For experimental analysis, real data collected from 4 multi-storied buildings situated in Seoul, South Korea, has been used. The collected data is provided as input to the data acquisition layer. In the pre-processing layer afterwards, several data cleaning and preprocessing schemes are applied to the input data for the removal of abnormalities. Preprocessing further consisted of two processes, namely the computation of statistical moments (mean, variance, skewness, and kurtosis) and data normalization. In the prediction layer, the feed forward back propagation neural network has been used on normalized data and data with statistical moments. In the performance evaluation layer, the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE) have been used to measure the performance of the proposed approach. The average values for data with statistical moments of MAE, MAPE, and RMSE are 4.3266, 11.9617, and 5.4625 respectively. These values of the statistical measures for data with statistical moments are less as compared to simple data and normalized data which indicates that the performance of the feed forward back propagation neural network (FFBPNN) on data with statistical moments is better when compared to simple data and normalized data.
In the higher education sector, there is a growing trend to offer academic information to users through websites. Contemporarily, the users (i.e., students/teachers, parents, and administrative staff) greatly rely on these websites to perform various academic tasks, including admission, access to learning management systems (LMS), and links to other relevant resources. These users vary from each other in terms of their technological competence, objectives, and frequency of use. Therefore, academic websites should be designed considering different dimensions, so that everybody can be accommodated. Knowing the different dimensions with respect to the usability of academic websites is a multi-criteria decision-making (MCDM) problem. The fuzzy analytic hierarchy process (FAHP) approach has been considered to be a significant method to deal with the uncertainty that is involved in subjective judgment. Although a wide range of usability factors for academic websites have already been identified, most of them are based on the judgment of experts who have never used these websites. This study identified important factors through a detailed literature review, classified them, and prioritized the most critical among them through the FAHP methodology, involving relevant users to propose a usability evaluation framework for academic websites. To validate the proposed framework, five websites of renowned higher educational institutes (HEIs) were evaluated and ranked according to the usability criteria. As the proposed framework was created methodically, the authors believe that it would be helpful for detecting real usability issues that currently exist in academic websites.
Brain Hemorrhage is the eruption of the brain arteries due to high blood pressure or blood clotting that could be a cause of traumatic injury or death. It is the medical emergency in which a doctor also need years of experience to immediately diagnose the region of the internal bleeding before starting the treatment. In this study, the deep learning models Convolutional Neural Network (CNN), hybrid models CNN+LSTM and CNN+GRU are proposed for the Brain Hemorrhage classification. The 200 head CT scan images dataset is used to boost the accuracy rate and computational power of the deep learning models. The major aim of this study is to use the abstraction power of deep learning on a set of fewer images because in most crucial cases extensive datasets are not available on the spot. The image augmentation and imbalancing the dataset methods are adopted with CNN model to design a unique architecture and named as Brain Hemorrhage Classification based on Neural Network (BHCNet). The performance of the proposed approach are analyzed in terms of accuracy, precision, sensitivity, specificity and F1-score. Further, the experimental results are evaluated by comparative analyses of the balanced and imbalanced dataset with CNN, CNN+LSTM and CNN+GRU models. The promising results are achieved with CNN by imbalancing the dataset and gain highest accuracy that outperforms the hybrid CNN+LSTM and CNN+GRU models. The results reveals the effectiveness of the proposed model for accurate prediction to save the life of the patient in the meantime and fast employment in the real life scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.