Modern high Charpy toughness steels can nonetheless show low crack arrest toughness[1]. In this paper, the relationship between initiation and arrest toughness is investigated in five different carbon steels, including S355 structural steels, X65 pipeline steel, and high strength reactor pressure vessel, RPV, steels. The results from small-scale mechanical tests, including instrumented Charpy, drop weight Pellini, fracture toughness, and tensile testing (including STRA in the through-thickness direction) were used to determine the behaviour of the different steels in terms of initiation fracture toughness and crack arrest toughness parameters. There was no correlation between the upper shelf initiation toughness and the arrest toughness when the results from the five steels were collated. The mechanical test results were then correlated to the steels’ microstructural characteristics, including parent metal microstructure, average grain size and grain aspect ratio to identify the relative roles of microstructure and texture in the fracture initiation and arrest performance of carbon steels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.