Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop.
It is undeniable that wireless communication technology has become a very important component of modern society. One aspect of modern society in which application of wireless communication technologies has tremendous potential is in agricultural production. This is especially true in the area of sensing and transmission of relevant farming information such as weather, crop development, water quantity and quality, among others, which would allow farmers to make more accurate and timely farming decisions. A good example would be the application of wireless communication technology to transmit soil moisture data in real time to help farmers make irrigation scheduling decisions. Although many systems are commercially available for soil moisture monitoring, there are still many important factors, such as cost, limiting widespread adoption of this technology among growers. Our objective in this study was, therefore, to develop and test an affordable wireless communication system for monitoring soil moisture using Decagon EC-5 sensors. The new system uses Arduino-compatible microcontrollers and communication systems to sample and transmit values from four Decagon EC-5 soil moisture sensors. Developing the system required conducting lab calibrations for the EC-5 sensors for the microcontroller operating in either 10-bit or 12-bit analog-to-digital converter (ADC) resolution. The system was successfully tested in the field and reliably collected and transmitted data from a wheat field for more than two months.
Variable-rate technology (VRT) may reduce input costs, increase crop productivity and quality, and help to protect the environment. The present study was conducted to evaluate the performance of a variable-rate fertilizer applicator for rice (Oryza sativa L.). Three replications were conducted, each of which was divided into four plots. Field performance of the system was assessed at different nitrogen levels (N1 to N4, i.e., 75, 125, 175, 225 kg ha−1), growth stages (tillering, panicle initiation, heading), and heights (40, 60, 80, 100 cm) of the sensor from the crop canopy. Fertilizer rate was at minimum 12.59 kg ha−1 at 10 rpm of drive-shaft rotational speed and at maximum 50.41 kg ha−1 at 40 rpm. The system response time was within the range of 3.53 to 4.93 s, with overall error ranging between 0.83% to 4.92%. Across different growth stages, when fertilizer rate was increased from N1 to N4, NDVI increased from 0.49 to 0.69. Hence, drive-shaft rotational speed is decreased from 25 to 7 rpm to shift the application rate from 30.83 to 9.15 kg ha−1. There was a 45% reduction in total fertilizer rate applied by the system, with respect to the recommended rate.
Nutrient application systems are designed to apply a relatively uniform amount of a fertilizer to agricultural fields. However, considerable variation in soil texture and other characteristics often occurs within and across production fields, which could have a major impact on fertilizer management strategies. Therefore, uniform application of a fertilizer over the entire field can be both costly and environmentally unsound. Due to their rugged and fool-proof design, crankshaft type piston pumps are widely used in agriculture. The on-the-go outlet flow of these pumps can only be varied by changing the drive shaft speed for each pump stroke setting. But only a limited range of flow rates can be achieved by changing the drive shaft speed. There is a need for an electronic controller, which can adjust the pump stroke on-the-go, for realtime, variable-rate application of crop nutrients. The Clemson "Electro-mechanical controller for adjusting pump stroke on-the-go" was designed to replace the current manual stroke adjustment system on positive displacement piston pumps. This affordable system can be retrofitted on most John Bluepiston pumps for real-time adjustment of the pump stroke and can be controlled using pre-described position sequences (map-based) or real-time sensor commands (such as optical, pressure, and flow sensors) combined with fertilizer calculation algorithms. In addition, it can adjust pump stroke manually, using an eclectic dial from the tractor's cab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.