Firefly luciferase (EC.1.13.12.7) from Photinus pyralis is a single polypeptide chain (62 kDa), responsible for emission of yellow-green (557 nm) light, known to be most efficient bioluminescence system that make it an excellent tool for reporter in nano-system biology. However, it is very sensitive to proteolytic degradation, which reduces its intracellular half-life, leads to loss in sensitivity and precision in analytic applications. In order to generate more stable luciferases against protease digestion, we substituted two tryptic sites: R(213), R(337) and also next residue to it (Q(338)) with another amino acids. Overall, all mutations brought about structural changes that indicated more compact structure upon mutation, which revealed by enhancement of tryptophan fluorescence, decreases flexibility and less surface hydrophobic pockets. In general, structural changes associated with a clear improvement in thermostability and resistance against trypsin hydrolysis. In particular, R337Q mutant shows higher light stability in mammalian cell culture, which makes it as a suitable reporter for imaging.
In nature, essential oils play an important role in the protection of the plants by exerting anti-bacterial, -viral, -fungal, -oxidative, -genotoxic, and free radical scavenging properties, as well as in some cases acting as insecticides. Several Satureja species are used in traditional medicine due to recognized therapeutic properties, namely anti-microbial and cytotoxic activities. The purpose of the present work was to determine the biologic activity of the essential oil of S. khuzistanica Jamzad (Lamiaceae) against four human cancer cell lines, as well as its inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. The essential oil was isolated by hydro-distillation and analyzed by GC-FID and GC-MS. Carvacrol (92.87%) and limonene (1.2%) were found to be the main components of the isolated oil. Anti-microbial activity of the essential oil was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test effects of the oil on each cancer cell line. The oil exhibited considerable anti-microbial activity against the majority of the tested bacteria and fungi. The test oil also significantly reduced cell viability of Vero, SW480, MCF7, and JET 3 cells in a dose-dependent manner, with the IC50 values calculated for each cell type being, respectively, 31.2, 62.5, 125, and 125 μg/ml. Based on the findings, it is concluded that the essential oil of S. khuzistanica and its major constituents have a potential for further use in anti-bacterial and anti-cancer applications, pending far more extensive testing of toxicities in normal (i.e. primary) cells.
Peroxidase is one of the most widely used enzymes in biotechnology and medicine. In the current study, cDNA encoding peroxidase from Lepidium draba (LDP) was cloned and expressed in Escherichia coli BL21 (DE3) cells in the form of inclusion bodies (IBs). To achieve purified active enzyme, IBs were solubilized before being purified and refolded. The deduced amino acid sequence (308) of the LDP gene (924 bp) revealed 88.96% identity to horseradish peroxidase C1A (HRP C1A). The results of basic local alignment search tool (BLAST) and phylogenetic analysis of the protein sequence showed that this enzyme belongs to the neutral group of class III plant peroxidases. According to sequence analysis and structural modeling, critical amino acids in heme and calcium binding domain as well as cysteine residues were conserved as HRP C1A except for calcium binding domain where valine228 was replaced with isoleucine. The far-UV circular dichroism (CD) results were confirmed by homology modeling data showing the enzyme consists mainly of α-helices as other plant peroxidases. Overall, according to the results of catalytic activity and refolding yield, LDP can be introduced as a novel peroxidase for medical and biotechnology applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.