In the recent decades, the main reason for the high death rate is related to cardiovascular disease and stroke. In this paper, numerical studies have been done to investigate the hemodynamic effects on the rupture of middle cerebral artery (MCA) in different working conditions. In this work, the effects of the blood viscosity and velocity on the pressure distribution and average wall shear stress (AWSS) are fully investigated. Also, the flow pattern inside the aneurysm is investigated to obtain the high-risk regions for the rupture of the aneurysm. Our findings show that the wall shear stress increases with increasing the blood flow velocity. Meanwhile, the risk of aneurysm rupture is considerably increased when the AWSS increases more than 0.6. In fact, the blood flow with high viscosity expands the high-risk region on the wall of the aneurysm. Blood flow indicates that the angle of the incoming bloodstream is substantially effective in the high-risk region on the aneurysm wall. The augmentation of the blood velocity and vortices considerably increases the risk of hemorrhage of the aneurysm.
The rupture of the aneurysm wall is highly associated with the hemodynamic feature of bloodstream as well as the geometrical feature of the aneurysm. Coiling is known as the most conventional technique for the treatment of intracranial cerebral aneurysms (ICA) in which blood stream is obstructed from entering the sac of the aneurysm. In this study, comprehensive efforts are done to disclose the impacts of the coiling technique on the aneurysm progress and risk of rupture. The computational fluid dynamic method is used for the analysis of the blood hemodynamics in the specific ICA. The impacts of the pulsatile blood stream on the high-risk region are also explained. Wall shear Stress (WSS) and Oscillatory shear index (OSI) factors are also compared in different blood viscosities and coiling conditions. According to our study, the hematocrit test (Hct) effect is evident (25% reduction in maximum WSS) in the two first stages (maximum acceleration and peak systolic). Our findings present that reduction of porosity from 0.89 to 0.79 would decrease maximum WSS by about 8% in both HCT conditions.
The initiation, growth, and rupture of cerebral aneurysms are directly associated with Hemodynamic factors. This report tries to disclose effects of endovascular technique (coiling and stenting) on the quantitative intra-aneurysmal hemodynamic and the rupture of cerebral aneurysms. In this paper, Computational Fluid Dynamic are done to investigate and compare blood hemodynamic inside aneurysm under effects of deformation (due to stent) and coiling of aneurysm. The blood stream inside the sac of aneurysm as well as pressure and OSI distribution on the aneurysm wall are compared in nine cases and results of two distinctive cases are compared and reported. Obtained results specifies that the mean WSS is reduced up to 20% via coiling of the aneurysm while the deformation of the aneurysm (applying stent) could reduce the mean WSS up to 71%. In addition, comparison of the blood hemodynamic shows that the blood bifurcation occurs in the dome of aneurysm when endovascular technique for the treatment is not applied. It is found that the bifurcation occurs at ostium section when ICA aneurysm is deformed by the application of stent. The impacts of coiling are mainly limited since the blood flow entrance is not limited in this technique and WSS is not reduced substantial. However, usage of stent deforms the aneurysm angle with the orientation of parent vessel and this reduces blood velocity at entrance of the ostium and consequently, WSS is decreased when deformation of the aneurysm fully occurs. These qualitative procedures provide a preliminary idea for more profound quantitative examination intended for assigning aneurysm risk of upcoming rupture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.