Facial palsy (FP) is a neurological disorder that affects the facial nerve, specifically the seventh nerve, resulting in the patient losing control of the facial muscles on one side of the face. It is an annoying condition that can occur in both children and adults, regardless of gender. Diagnosis by visual examination, based on differences in the sides of the face, can be prone to errors and inaccuracies. The detection of FP using artificial intelligence through computer vision systems has become increasingly important. Deep learning is the best solution for detecting FP in real-time with high accuracy, saving patients time, effort, and cost. Therefore, this work proposes a real-time detection system for FP, and for determining the patient’s gender and age, using a Raspberry Pi device with a digital camera and a deep learning algorithm. The solution facilitates the diagnosis process for both the doctor and the patient, and it could be part of a medical assessment activity. This study used a dataset of 20,600 images, containing 19,000 normal images and 1600 FP images, to achieve an accuracy of 98%. Thus, the proposed system is a highly accurate and capable medical diagnostic tool for detecting FP.
Facial palsy (FP) is a disorder that affects the seventh facial nerve, which makes the patient unable to control facial movements and expressions with other vital activities. It affects one side of the face, and it is usually diagnosed by the asymmetry of the two sides of the face through visual inspection by a doctor. However, the visual inspection is human-based, which is prone to errors because the doctor is exposed to omission due to fatigue and work stress. Therefore, it is important to develop a new method for detecting FP through artificial intelligence and use a more accurate computerized system to reduce the effort and cost of patients and increase the accuracy of diagnosis. This work aims to establish a safe, useful and high-accuracy diagnostic system for FP that can be used by the patient and proposes to detect FP using a digital camera and deep learning techniques automatically. The system could be used by the patient himself at home without needing to visit the hospital. The proposed system trained 570 images, including 200 images of FP palsy. The proposed FP system achieved an accuracy of 98%. This confirms the effectiveness of the proposed system and makes it an efficient medical examination tool for detecting FP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.