In this paper, a new robotic architecture for plant phenotyping is being introduced. The architecture consists of two robotic platforms: an autonomous ground vehicle (Vinobot) and a mobile observation tower (Vinoculer). The ground vehicle collects data from individual plants, while the observation tower oversees an entire field, identifying specific plants for further inspection by the Vinobot. The advantage of this architecture is threefold: first, it allows the system to inspect large areas of a field at any time, during the day and night, while identifying specific regions affected by biotic and/or abiotic stresses; second, it provides high-throughput plant phenotyping in the field by either comprehensive or selective acquisition of accurate and detailed data from groups or individual plants; and third, it eliminates the need for expensive and cumbersome aerial vehicles or similarly expensive and confined field platforms. As the preliminary results from our algorithms for data collection and 3D image processing, as well as the data analysis and comparison with phenotype data collected by hand demonstrate, the proposed architecture is cost effective, reliable, versatile, and extendable.
Weighting pixel contribution considering its location is a key feature in many fundamental image processing tasks including filtering, object modeling and distance matching. Several techniques have been proposed that incorporate Spatial information to increase the accuracy and boost the performance of detection, tracking and recognition systems at the cost of speed. But, it is still not clear how to efficiently extract weighted local histograms in constant time using integral histogram. This paper presents a novel algorithm to compute accurately multi-scale Spatially weighted local histograms in constant time using Weighted Integral Histogram (SWIH) for fast search. We applied our spatially weighted integral histogram approach for fast tracking and obtained more accurate and robust target localization result in comparison with using plain histogram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.