Most tumors have an aberrantly activated lipid metabolism
1
,
2
,
which enables them to synthesize, elongate and desaturate fatty acids to support
proliferation. However, only particular subsets of cancer cells are sensitive
toward approaches targeting fatty acid metabolism, and in particular fatty acid
desaturation
3
. This suggests that many
cancer cells harbor an unexplored plasticity in their fatty acid metabolism.
Here, we discover that some cancer cells can exploit an alternative fatty acid
desaturation pathway. We identify various cancer cell lines, murine
hepatocellular carcinomas (HCC), and primary human liver and lung carcinomas
that desaturate palmitate to the unusual fatty acid sapienate to support
membrane biosynthesis during proliferation. Accordingly, we found that sapienate
biosynthesis enables cancer cells to bypass the known stearoyl-CoA desaturase
(SCD)-dependent fatty acid desaturation. Thus, only by targeting both
desaturation pathways the
in vitro
and
in vivo
proliferation of sapienate synthesizing cancer cells is impaired. Our discovery
explains metabolic plasticity in fatty acid desaturation and constitutes an
unexplored metabolic rewiring in cancers.
The advent of next generation gene editing technologies has revolutionized the fields of genome engineering in allowing the generation of gene knockout models and functional gene analysis. However, the screening of resultant clones remains challenging due to the simultaneous presence of different indels. Here, we present CRISP-ID, a web application which uses a unique algorithm for genotyping up to three alleles from a single Sanger sequencing trace, providing a robust and readily accessible platform to directly identify indels and significantly speed up the characterization of clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.