Skin hydration plays an important role in the optimal physical properties and physiological functions of the skin. Despite the advancements in the last decade, dry skin remains the most common characteristic of human skin disorders. Thus, it is important to understand the effect of hydration on Stratum Corneum (SC) components. In this respect, our interest consists in correlating the variations of unbound and bound water content in the SC with structural and organizational changes in lipids and proteins using a non-invasive technique: Raman spectroscopy. Raman spectra were acquired on human SC at different relative humidity (RH) levels (4-75%). The content of different types of water, bound and free, was measured using the second derivative and curve fitting of the Raman bands in the range of 3100-3700 cm(-1). Changes in lipidic order were evaluated using νC-C and νC-H. To analyze the effect of RH on the protein structure, we examined in the Amide I region, the Fermi doublet of tyrosine, and the νasymCH3 vibration. The contributions of totally bound water were found not to vary with humidity, while partially bound water varied with three different rates. Unbound water increased greatly when all sites for bound water were saturated. Lipid organization as well as protein deployment was found to be optimal at intermediate RH values (around 60%), which correspond to the maximum of SC water binding capacity. This analysis highlights the relationship between bound water, the SC barrier state and the protein structure and elucidates the optimal conditions. Moreover, our results showed that increased content of unbound water in the SC induces disorder in the structures of lipids and proteins.
Raman microspectroscopy allows probing subcellular compartments and provides a unique spectral fingerprint indicative of endogenous molecular composition. Although several spectroscopic cell studies have been reported on fixed samples, only few attempts concern single growing cells. Here, we have tested different optical substrates that would best preserve cell integrity and allow direct measurement of Raman spectra at the single living cell level. Calu-1 lung cancer cells were used as a model and their morphology and growth were assessed on Raman substrates like quartz, calcium fluoride, and zinc selenide. Data show that quartz was the most appropriate taking into consideration both cell morphology and proliferation rate (47% on quartz vs. 55% of BrdU-positive cells on conventional plastic). Using quartz, 40 cells were analysed and Raman spectra were collected from nuclei and cytoplasms using a 785 nm laser excitation of 30 mW at the sample, in the spectral range of 580-1750 cm(-1), and an acquisition time of 2 x 10 sec/spectrum. Discriminant spectral information related to nucleus and cytoplasm were extracted by multivariate statistical methods and attributed to nucleic acids, lipids, and proteins. Finally, Raman spectral imaging was performed to show the distribution of these components within the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.