Abstract-The continuously increasing complexity of communication networks and the increasing diversity and unpredictability of traffic demand has led to a consensus view that the automation of the management process is inevitable. Currently, network and service management techniques are mostly manual, requiring human intervention, and leading to slow response times, high costs, and customer dissatisfaction. In this paper we present AutoNet, a self-organizing management system for core networks where robustness to environmental changes, namely traffic shifts, topology changes, and community of interest is viewed as critical. A framework to design robust control strategies for autonomic networks is proposed. The requirements of the network are translated to graph-theoretic metrics and the management system attempts to automatically evolve to a stable and robust control point by optimizing these metrics. The management approach is inspired by ideas from evolutionary science where a metric, network criticality, measures the survival value or robustness of a particular network configuration. In our system, network criticality is a measure of the robustness of the network to environmental changes. The control system is designed to direct the evolution of the system state in the direction of increasing robustness. As an application of our framework, we propose a traffic engineering method in which different paths are ranked based on their robustness measure, and the best path is selected to route the flow. The choice of the path is in the direction of preserving the robustness of the network to the unforeseen changes in topology and traffic demands. Furthermore, we develop a method for capacity assignment to optimize the robustness of the network.
The study of robustness and connectivity properties are important in the analysis of complex networks. This paper reports on an effort to compare different network topologies according to their algebraic connectivity, network criticality, average node degree, and average node betweenness. We consider different network types and study the behavior of these various metrics as scale is increased. Based on extensive simulations, we suggest some guidelines for the design and simplification of networks. The main finding is that, algebraic connectivity, network criticality, average degree, and average node betweenness capture different properties of a graph. Depending on the nature of the problem at hand, one needs to select which one is appropriate to use as the main metric for network analysis.
Nation's economy, safety, and quality of life are influenced by a well-behaved transportation system. Yet, demands in transportation are ever increasing due to trends in population growth, emerging technologies, and the increased globalization of the economy which has kept pushing the system to its limits. The rate of increasing the number of vehicles is at points even more than the overall population increase rate, which leads to more congested and dangerous roadways. This problem is not going to be addressed by just adding to the number of roads anymore. The construction cost is very high and the time to return the result is too lengthy to catch up with the vehicle increase rate.One way to improve upon the fleet management is by viewing the road as an information highway as opposed to highway for vehicles. The scale of ingested data in the transportation system and even the interaction of various components of the system that generates the data have become a bottleneck for the traditional data analytics solutions. On the other hand, machine learning is a form of Artificial Intelligence (AI) and a data-driven solution that can cope with the new system requirements. Machine learning learns the latent patterns of historical data to model the behavior of a system and to respond accordingly in order to automate the analytical model building.The availability of increased computational power and collection of the massive amount of data have redefined the value of the machine learning-based approaches for addressing the emerging demands and needs in transportation systems.Machine learning solutions have already begun their promising marks in the transportation industry, where it is proved to even have a higher return on investment compared to the conventional solutions. However, the transportation problems are still rich in applying and leveraging machine learning techniques and need more consideration. The underlying goals for these solutions are to reduce congestion, improve safety and diminish human errors, mitigate unfavorable environmental impacts, optimize energy performance, and improve the productivity and efficiency of surface transportation.In this special issue, we present original research work aimed at reporting on new models, algorithms, and case studies related to the use of machine learning in the field of transportation and further analysis of the reliability and robustness of the whole transportation system. In particular, the special issue focuses on prediction methods in transportation, transport network traffic flows and signals, public transportation including air fleet, driving styles, electric cars, and car sharing.In recent years, machine learning techniques have become an integral part of realizing smart transportation. In this context, using an improved deep learning model, the complex interactions among roadways, transportation traffic, environmental elements, and traffic crashes have been explored. The proposed model includes two modules, an unsupervised feature learning module to identify ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.