Regular exercise promotes whole-body health and prevents disease, yet the underlying molecular mechanisms throughout a whole organism are incompletely understood. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome, and immunome in whole blood, plasma, and 18 solid tissues in Rattus norvegicus over 8 weeks of endurance exercise training. The resulting data compendium encompasses 9466 assays across 19 tissues, 25 molecular platforms, and 4 training time points in young adult male and female rats. We identified thousands of shared and tissue- and sex- specific molecular alterations. Temporal multi-omic and multi-tissue analyses demonstrated distinct patterns of tissue remodeling, with widespread regulation of immune, metabolism, heat shock stress response, and mitochondrial pathways. These patterns provide biological insights into the adaptive responses to endurance training over time. For example, exercise training induced heart remodeling via altered activity of the Mef2 family of transcription factors and tyrosine kinases. Translational analyses revealed changes that are consistent with human endurance training data and negatively correlated with disease, including increased phospholipids and decreased triacylglycerols in the liver. Sex differences in training adaptation were widespread, including those in the brain, adrenal gland, lung, and adipose tissue. Integrative analyses generated novel hypotheses of disease relevance, including candidate mechanisms that link training adaptation to non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health, and tissue injury and recovery. The data and analysis results presented in this study will serve as valuable resources for the broader community and will be provided in an easily accessible public repository (https://motrpac-data.org/).
Cigarette smoking entails chronic exposure to a mixture of harmful chemicals that trigger molecular changes over time, and is known to increase the risk of developing diseases. Risk assessment in the context of 21st century toxicology relies on the elucidation of mechanisms of toxicity and the identification of exposure response markers, usually from high-throughput data, using advanced computational methodologies. The sbv IMPROVER Systems Toxicology computational challenge (Fall 2015–Spring 2016) aimed to evaluate whether robust and sparse (≤40 genes) human (sub-challenge 1, SC1) and species-independent (sub-challenge 2, SC2) exposure response markers (so called gene signatures) could be extracted from human and mouse blood transcriptomics data of current (S), former (FS) and never (NS) smoke-exposed subjects as predictors of smoking and cessation status. Best-performing computational methods were identified by scoring anonymized participants’ predictions. Worldwide participation resulted in 12 (SC1) and six (SC2) final submissions qualified for scoring. The results showed that blood gene expression data were informative to predict smoking exposure (i.e. discriminating smoker versus never or former smokers) status in human and across species with a high level of accuracy. By contrast, the prediction of cessation status (i.e. distinguishing FS from NS) remained challenging, as reflected by lower classification performances. Participants successfully developed inductive predictive models and extracted human and species-independent gene signatures, including genes with high consensus across teams. Post-challenge analyses highlighted “feature selection” as a key step in the process of building a classifier and confirmed the importance of testing a gene signature in independent cohorts to ensure the generalized applicability of a predictive model at a population-based level. In conclusion, the Systems Toxicology challenge demonstrated the feasibility of extracting a consistent blood-based smoke exposure response gene signature and further stressed the importance of independent and unbiased data and method evaluations to provide confidence in systems toxicology-based scientific conclusions.
Motivation: Sequence-based deep learning approaches have been shown to predict a multitude of functional genomic readouts, including regions of open chromatin and RNA expression of genes. However, a major limitation of current methods is that model interpretation relies on computationally demanding post-hoc analyses, and even then, we often cannot explain the internal mechanics of highly parameterized models. Here, we introduce a deep learning architecture called tiSFM (totally interpretable sequence to function model). tiSFM improves upon the performance of standard multi-layer convolutional models while using fewer parameters. Additionally, while tiSFM is itself technically a multi-layer neural network, internal model parameters are intrinsically interpretable in terms of relevant sequence motifs. Results: tiSFM's model architecture makes use of convolutions with a fixed set of kernel weights representing known transcription factor (TF) binding site motifs. We analyze published open chromatin measurements across hematopoietic lineage cell-types and demonstrate that tiSFM outperforms a state-of-the-art convolutional neural network model custom-tailored to this dataset. We also show that it correctly identifies context specific activities of transcription factors with known roles in hematopoietic differentiation, including Pax5 and Ebf1 for B-cells, and Rorc for innate lymphoid cells. tiSFM's model parameters have biologically meaningful interpretations, and we show the utility of our approach on a complex task of predicting the change in epigenetic state as a function of developmental transition.
Crowdsourcing has been used to address computational challenges in systems biology and assess translation of findings across species. Sub-challenge 2 of the sbv IMPROVER Systems Toxicology Challenge was designed to determine whether a common set of genes can be used to identify exposure to cigarette smoke in both human and mouse. Participating teams used a training set of human and mouse blood gene expression data to derive parsimonious models (up to 40 genes) that classify subjects into exposure groups: smokers, former smokers, and never-smokers. Teams were ranked based on two classification performance metrics evaluated on a blinded test dataset. Prediction of current exposure to cigarette smoke in human and mouse by a common prediction model was achieved by the top ranked team (Team 219) with 89% balanced accuracy (BAC), while past exposure was predicted with only 57% BAC. The prediction model of the top ranked team was a random forest classifier trained on sets of genes that appeared best for each species separately with no overlap between species. By contrast, Team 264, ranked second (tied with Team 250), selected genes that were simultaneously predictive in both species and achieved 80% and 59% BAC when predicting current and past exposure, respectively. These performance values were lower than the 96.5% and 61% BAC estimates for current and past exposure, respectively, obtained by Team 264 (top ranked in sub-challenge 1) when using only human data. Unlike past exposure, current exposure to cigarette smoke can be accurately assessed in both human and mouse with a common prediction model based on blood mRNAs. However, requiring a gene signature to be predictive in both species resulted in a substantial decrease in balanced accuracy for prediction of current exposure to cigarette smoke (from 96.5% to 80%), suggesting species-specific responses exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.