Joining of thermoplastic composites is an important step in the manufacturing of aerospace thermoplastic composite structures. Therefore, several joining methods for thermoplastic composite components have been under investigation and development. In general, joining of thermoplastic composites can be categorized into mechanical fastening, adhesive bonding, solvent bonding, co-consolidation, and fusion bonding or welding. Fusion bonding or welding has great potential for the joining, assembly, and repair of thermoplastic composite components and also offers many advantages over other joining techniques. The process of fusion-bonding involves heating and melting the polymer on the bond surfaces of the components and then pressing these surfaces together for polymer solidification and consolidation. The focus of this paper is to review the different fusion-bonding methods for thermoplastic composite components and present recent developments in this area. The various welding techniques and the corresponding manufacturing methodologies, the required equipment, the effects of processing parameters on weld performance and quality, the advantages/disadvantages of each technique, and the applications are described.
The possibility of assembling through welding is one of the major features of thermoplastic composites and it positively contributes to their cost-effectiveness in manufacturing. This article presents a comparative evaluation of ultrasonic, induction and resistance welding of individual carbon fibre-reinforced polyphenylene sulphide (PPS) thermoplastic composite samples that comprises an analysis of the static and dynamic mechanical behaviour of the joints as well as of the main process variables. The induction welding process as used in this research benefitted from the conductive nature of the reinforcing fibres. Hence, no susceptor was placed at the welding interface. Resistance welding used a fine-woven stainless-steel mesh as the heating element and low welding pressures and times were applied to prevent current leakage. Triangular energy directors moulded on a separate tape of PPS resin were used to concentrate ultrasonic heat at the welding interface. The static single-lap shear strength of the joints was found similar for induction and ultrasonic welding. A 15% drop in the static mechanical properties of the resistance welded joints was attributed to incomplete welded overlaps following current leakage prevention. However, the fatigue performance relative to the static one was similar for the three sorts of joints. A comparative analysis of process variables such as welding time, required power and energy was also carried out.
The objective of this work is to determine the effects of metal mesh heating element size on resistance welding of thermoplastic composites. The materials to be resistance-welded consisted of carbon fiber/poly-ether-ketone-ketone (CF/PEKK), carbon fiber/poly-ether-imide (CF/PEI) and glass fiber/PEI (GF/PEI). Four different metal mesh sizes were used as heating elements. The samples were welded in a lap shear joint configuration and mechanically tested. Maximum Lap Shear Strengths of 52, 47 and 33 MPa were obtained for the CF/PEKK, CF/PEI and GF/PEI specimens, respectively. The ratio of the heating element’s fraction of open area and wire diameter was shown to be the most important parameter to be considered when selecting an appropriate heating element size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.