Real-time gait event detection (GED) using inertial sensors is important for applications such as remote gait assessments, intelligent assistive devices including microprocessor-based prostheses or exoskeletons, and gait training systems. GED algorithms using acceleration and/or angular velocity signals achieve reasonable performance; however, most are not suited for real-time applications involving clinical populations walking in free-living environments. The aim of this study was to develop and evaluate a real-time rules-based GED algorithm with low latency and high accuracy and sensitivity across different walking states and participant groups. The algorithm was evaluated using gait data collected from seven able-bodied (AB) and seven lower-limb prosthesis user (LLPU) participants for three walking states (level-ground walking (LGW), ramp ascent (RA), ramp descent (RD)). The performance (sensitivity and temporal error) was compared to a validated motion capture system. The overall sensitivity was 98.87% for AB and 97.05% and 93.51% for LLPU intact and prosthetic sides, respectively, across all walking states (LGW, RA, RD). The overall temporal error (in milliseconds) for both FS and FO was 10 (0, 20) for AB and 10 (0, 25) and 10 (0, 20) for the LLPU intact and prosthetic sides, respectively, across all walking states. Finally, the overall error (as a percentage of gait cycle) was 0.96 (0, 1.92) for AB and 0.83 (0, 2.08) and 0.83 (0, 1.66) for the LLPU intact and prosthetic sides, respectively, across all walking states. Compared to other studies and algorithms, the herein-developed algorithm concurrently achieves high sensitivity and low temporal error with near real-time detection of gait in both typical and clinical populations walking over a variety of terrains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.