Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.
The modelling and simulation of planing craft manoeuvres requires coupled six degrees of freedom (6 DOF) motion equations. A coupled 6 DOF motion equation needs hundreds of manoeuvring hydrodynamic coefficients (MHCs) that are mostly determined using the planar motion mechanism (PMM) test. The number of test runs is too high, unless a kind of simplification is imposed to the motion equations. This study modifies 6 DOF motion equations to 4+2 DOF motion equations in which heave and pitch equations are replaced by dynamic draught and trim (so-called running attitude), respectively. The method is applicable for a manoeuvre that commences in the planing regime and ends in the same regime. On that basis, the PMM test is conducted and the model is restrained in the vertical plane at a certain running attitude, determined by a resistance test. The 4+2 DOF method, together with MHCs from the PMM test, are employed for the simulation of turning manoeuvres of a 25° prismatic planing hull. The results of the simulation indicate that the 4+2 DOF method reasonably predicts the path of the craft during the turning manoeuvre and cuts the number of PMM tests required at the same time. The PMM test results show that MHCs are highly related to forward speed and wetted surfaces. The turning manoeuvre simulation shows that the non-linear terms of MHCs cannot be ignored. The STD/L (Steady Turning Diameter divided by Length of the craft) for a planing craft is very large, compared to ships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.