Many of the most advanced applications of semiconductor quantum dots (QDs) in quantum information technology require a fine control of the QDs' position and confinement potential, which cannot be achieved with conventional growth techniques. Here, a novel and versatile approach for the fabrication of site-controlled QDs is presented. Hydrogen incorporation in GaAsN results in the formation of N-2H and N-2H-H complexes, which neutralize all the effects of N on GaAs, including the N-induced large reduction of the bandgap energy. Starting from a fully hydrogenated GaAs/GaAsN:H/GaAs quantum well, the NH bonds located within the light spot generated by a scanning near-field optical microscope tip are broken, thus obtaining site-controlled GaAsN QDs surrounded by a barrier of GaAsN:H (laterally) and GaAs (above and below). By adjusting the laser power density and exposure time, the optical properties of the QDs can be finely controlled and optimized, tuning the quantum confinement energy over more than 100 meV and resulting in the observation of single-photon emission from both the exciton and biexciton recombinations. This novel fabrication technique reaches a position accuracy <100 nm and it can easily be applied to the realization of more complex nanostructures.
Super-resolution microscopy refers to a powerful set of imaging techniques that overcome the diffraction limit. Some of these techniques, of which the importance was emphasized by the 2014 Nobel Prize for chemistry, are based on the clever concept of image reconstruction by spatially sparse sampling. Here, we introduce the concept of super-resolution spectroscopy based on sparse sampling in the frequency domain, and show that this can be naturally achieved using a random laser source. In its chaotic regime, the emission spectrum of a random laser features sharp spikes at uncorrelated frequencies that are sparsely distributed over the emission bandwidth. These narrow lasing modes probe stochastically the spectral response of a sample, allowing to
The fabrication of integrated quantum dot (QD)-optical microcavity systems is a requisite step for the realization of a wide range of nanophotonic experiments (and applications) that exploit the ability of QDs to emit nonclassical light, e.g., single photons. Thanks to their ∼20-nm positioning accuracy and to their proven potential for single-photon operation, the QDs obtained by spatially selective hydrogen irradiation of dilute-nitride semiconductors-such as Ga(AsN) and Ga(PN)-are uniquely suited for integration with photonic nanodevices. In the present work, we demonstrate the ability to deterministically integrate single, site-controlled Ga(AsN)/Ga(AsN):H QDs within a photonic crystal (PhC) cavity. The properties of the fabricated QD-PhC cavity systems are then probed by photon correlation-providing clear evidence of single-photon emission-and time-resolved microphotoluminescence spectroscopy. Detailed information on the dynamics of our integrated nanodevices can be inferred by comparing these experiments to the solutions of a rate-equations system, developed by taking into account all the main processes leading to the capture, relaxation, and recombination of carriers in and out of the QD. This allows us to follow the evolution of the relevant recombination rates in our system for varying energy detuning, E, between the QD and the PhC cavity. When the QD exciton transition is nearly resonant with the cavity mode, a large (>tenfold) enhancement of the spontaneous emission rate is observed, in substantial agreement with Jaynes-Cummings (JC) theory. For intermediate detunings (E ∼ 1.5-3.5 meV), on the other hand, the observed enhancement is significantly larger than that predicted by JC theory, due to the important role played by acoustic phonons in mediating the QD-PhC cavity coupling in a solid-state environment. Apart from its fundamental interest, the observation of such phonon-mediated, broadband enhancement of light-matter interaction significantly relaxes the requirements for the realization of a large variety of cavity QED-based experiments and applications. These include many photonic devices for which the use of site-controlled Ga(AsN)/Ga(AsN):H QDs would be inherently advantageous, such as those based on the coupling between more than one QD and a single cavity mode (e.g., few-QD nanolasers and QD solids).
Spectroscopic applications are characterized by the constant effort to combine high spectral resolution with large bandwidth. A trade-off typically exists between these two aspects, but the recent development of super-resolved spectroscopy techniques is bringing new opportunities into this field. This is particularly relevant for all applications where compact and cost-effective instruments are needed such as in sensing, quality control, environmental monitoring, or biometric authentication, to name a few. These unconventional approaches exploit several strategies for spectral investigation, taking advantage of concepts such as sparse sampling, artificial intelligence, or post-processing reconstruction algorithms. In this Perspective, we discuss the main strengths and weaknesses of these methods, tracing promising future directions for their further development and widespread adoption.
In article number 1705450, Francesco Biccari and co-workers describe a novel and versatile approach for the post-growth fabrication of site-controlled, single-photon-emitting quantum dots. This approach, which deploys the hot spot of a near-field microscope to locally remove hydrogen from nanometer-sized regions of a standard GaAs/GaAsN:H/ GaAs quantum well, features state-of-the-art control over both the nanostructure position (<100 nm) and emission energy (≈20 meV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.