TiO2 sepiolite and zeolite composites, as well the corresponding N-doped composites, synthesized through a sol–gel method, were tested for the photocatalytic degradation of a widespread fluoroquinolone antibiotic (ofloxacin) under environmental conditions. The catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS) analyses. A complete drug degradation occurred in 10–15 min in the presence of both TiO2 sepiolite and zeolite catalysts, and in 20–30 min with the N-doped ones. Sepiolite proved to be a better TiO2 support compared to the most common zeolite both in terms of adsorption capacity and photocatalytic efficiency in pollutants degradation. The influence of nitrogen doping (red shift from 3.2 to 3.0 eV) was also investigated. Although it was blurred by a marked increase of the particle dimension and thus a decrease of the specific surface area of the doped catalysts, it allowed a faster drug removal than direct photolysis. The photochemical paths and photoproducts were investigated, too.
Photocatalysis by semiconductors is considered one of the most promising advanced oxidation processes (AOPs) and TiO2 is the most well-studied material for the removal of contaminants from the aquatic system. Over the last 20 years, pharmaceuticals have been the most investigated pollutants. They re-enter the environment almost unmodified or slightly metabolized, especially in the aquatic environment, since the traditional urban wastewater treatment plants (WWTPs) are not able to abate them. Due to their continuous input, persistence in the environment, and unpleasant effects even at low concentrations, drugs are considered contaminants of emerging concern (ECs). Among these, we chose fluoroquinolone (FQ) antibiotics as an environmental probe for assessing the role of TiO2 photocatalysis in the degradation of recalcitrant pollutants under environmental conditions and detoxification of surface waters and wastewaters. Due to their widespread diffusion, their presence in the list of the most persistent pollutants, and because they have been deeply investigated and their multiform photochemistry is well-known, they are able to supply rich information, both chemical and toxicological, on all key steps of the oxidative degradation process. The present review article explores, in a non-exhaustive way, the relationship among pollution, toxicity and remediation through titanium dioxide photocatalysis, with particular attention to the toxicological aspect. By using FQs as the probe, in depth indications about the different phases of the process were obtained, and the results reported in this paper may be useful in the improvement of large-scale applications of this technology, and—through generally valid methods—they could be deployed to other pharmaceuticals and emerging recalcitrant contaminants.
The photodegradation process of seven glucocorticoids (GCs), cortisone (CORT), hydrocortisone (HCORT), betamethasone (BETA), dexamethasone (DEXA), prednisone (PRED), prednisolone (PREDLO) and triamcinolone (TRIAM) was studied in tap and river water at a concentration close to the environmental ones. All drugs underwent sunlight degradation according to a pseudo-first-order decay. The kinetic constants ranged from 0.00082 min−1 for CORT to 0.024 min−1 for PRED and PREDLO. The photo-generated products were identified by high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The main steps of the degradation pathways were the oxidative cleavage of the chain 17 for CORT, HCORT and the rearrangement of the cyclohexadiene moiety for the other GCs. The acute and chronic toxicity of GCs and of their photoproducts was assessed by the V. fischeri and P.subcapitata inhibition assays. The bioassays revealed no significant differences in toxicity between the parent compounds and their photoproducts, but the two organisms showed different responses. All samples produced a moderate acute toxic effect on V. fisheri and no one in the chronic tests. On the contrary, evident hormesis or eutrophic effect was produced on the algae, especially for long-term contact.
The photodegradation of the most prescribed glucocorticoids (GCs) was studied under relevant environmental conditions in the presence of suspended TiO2. The considered drugs included cortisone (CORT), hydrocortisone (HCORT), betamethasone (BETA), dexamethasone (DEXA), prednisone (PRED), prednisolone (PREDLO), and triamcinolone (TRIAM). The experiments were carried out at concentrations (50 µg L−1) close to the real ones in freshwater samples (tap and river) under simulated and natural sunlight, and their decomposition took place very efficiently under natural sunlight. The reactions were monitored by high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). According to a pseudo-first-order decay, all drugs underwent degradation within 15 min, following different paths with respect to the direct photolysis. The observed kinetic constants, slightly lower in river than in tap water, varied from 0.29 to 0.61 min−1 with modest differences among GCs in the same matrix. Among main matrix macro-constituents, humic acids (HAs) were the most interfering species involved in GCs degradation. The photogenerated primary products were identified by HPLC-ESI-MS/MS, allowing to elucidate the general photochemical path of GCs. Finally, a comparison with literature data obtained using different advanced oxidation processes (AOPs) highlights the treatment efficiency with TiO2/solar light for removing such persistent aquatic contaminants.
Introduction In this paper, an analytical pipeline designed for untargeted lipidomic profiling in human plasma is proposed. The analytical pipeline was developed for case-control studies nested in prospective cohorts. Methods The procedure consisted of isopropanol protein precipitation followed by reverse phase liquid chromatography coupled to high resolution mass spectrometry and software-assisted data processing. The compounds are putatively annotated by matching experimental mass spectrometry data with spectral library data using LipidSearch software. The lipid profile of a pool of plasma samples from 10 healthy volunteers was detected in both positive and negative polarity modes. The impact of the chosen polarity on the number and quality of the lipid identification has been evaluated. Results More than 1000 lipids from 12 different classes were detected, 1150 in positive mode and 273 in negative mode. Nearly half of them were unambiguously identified by the software in positive mode, and about one-third in negative mode. The method repeatability was assessed on the plasma pool samples by means of variance components analysis. The intra- and inter-assay precision was measured for 10 lipids chosen among the most abundant found within the different lipid classes. The intra-assay coefficients of variation ranged from 2.56% to 4.56% while intra- and inter-day coefficients of variance never exceeded the 15% benchmark adopted. The lipidomic profiles of the 10 healthy volunteers were also investigated. Discussion This method detects a wide range of lipids and reports their degree of identification. It is particularly fit and well-designed for large case-control epidemiologic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.