This work presents a systematic study of cellulose (CLS) as a sacrificial biomass for photocatalytic H2 evolution from water. The idea is indeed to couple a largely available and not expensive biomass, and water, with a renewable energy like solar radiation. An aqueous CLS suspension irradiated either at 366 nm (UV-A) or under sunlight in the presence of Pt/TiO2 behaves as a H2 evolving system. The effects of irradiation time, catalyst and CLS concentrations, pH and water salinity are studied. Addition of CLS to the sample significantly improved H2 evolution from water splitting, with yields up to ten fold higher than those observed in neat water. The mechanism of the photocatalytic process relies on the TiO2-mediated CLS hydrolysis, under irradiation. The polysaccharide depolymerisation generates water-soluble species and intermediates, among them 5-hydroxymethylfurfural (HMF) was identified. These intermediates are readily oxidized following the glucose photoreforming, thus enhancing water hydrogen ion reduction to give gas-phase H2. The formation of "colored" by-products from HMF self-polymerization involves a sort of "in situ dye sensitization" that allows an effective photoreaction even under solar light. The procedure is evaluated and successfully extended on cellulosic biomasses, i.e. rice husk and alfalfa (Medicago sativa) stems, not previously investigated for this application.
Elucidating the structure and biosynthesis of neuromelanin (NM) would be an important step towards understanding its putative role in the pathogenesis of Parkinson's disease. A useful complement to studies aimed at unraveling the origin and properties of this essentially insoluble natural substance is the preparation of synthetic derivatives that resemble NM. With this aim in mind, water-soluble conjugates between dopamine-derived melanin and bovine serum albumin (BSA) were synthesized. Melanin-BSA adducts were prepared with both eumelanic oligomers obtained through the oxidative polymerization of dopamine and pheomelanic oligomers obtained under the same conditions from dopamine and cysteine. Iron ions were added during the synthesis to understand the interaction between the pigment and this metal ion, as the NM in neurons in several human brain regions contains significant amounts of iron. The structures of the conjugates were analyzed by (1)H NMR spectroscopy and controlled proteolysis/MS experiments. The binding of iron(III) ions was evaluated by ICP analysis and EPR spectroscopy. The EPR signal from bound iron(III) indicated high-spin octahedral sites and, as also seen for NM, the signal is coupled to a signal from a radical associated with the melanic components of the conjugates. However, the intensity of the EPR signal from iron suggested a reduced fraction of the total iron, indicating that most of the iron is strongly coupled in clusters within the matrix. The amount of paramagnetic, mononuclear iron(III) was greater in the pheomelanin-BSA conjugates, suggesting that iron clustering is reduced in the sulfur-containing pigment. Thus, the melanin-BSA conjugates appear to be good models for the natural pigment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.