Stimulation of metastatic MTLn3 cells with epidermal growth factor (EGF) causes a rapid and transient increase in actin nucleation activity resulting from the appearance of free barbed ends at the extreme leading edge of extending lamellipods. To investigate the role of cofilin in EGF-stimulated actin polymerization and lamellipod extension in MTLn3 cells, we examined in detail the temporal and spatial distribution of cofilin relative to free barbed ends and characterized the actin dynamics by measuring the changes in the number of actin filaments. EGF stimulation triggers a transient increase in cofilin in the leading edge near the membrane, which is precisely cotemporal with the appearance of free barbed ends there. A deoxyribonuclease I binding assay shows that the number of filaments per cell increases by 1.5-fold after EGF stimulation. Detection of pointed ends in situ using deoxyribonuclease I binding demonstrates that this increase in the number of pointed ends is confined to the leading edge compartment, and does not occur within stress fibers or in the general cytoplasm. Using a light microscope severing assay, cofilin's severing activity was observed directly in cell extracts and shown to be activated after stimulation of the cells with EGF. Microinjection of function-blocking antibodies against cofilin inhibits the appearance of free barbed ends at the leading edge and lamellipod protrusion after EGF stimulation. These results support a model in which EGF stimulation recruits cofilin to the leading edge where its severing activity is activated, leading to the generation of short actin filaments with free barbed ends that participate in the nucleation of actin polymerization.
No abstract
Using both light and high resolution electron microscopy, we analyzed the spatial and temporal relationships between the Arp2/3 complex and the nucleation activity that is required for lamellipod extension in mammary carcinoma cells after epidermal growth factor stimulation. A rapid two- to fourfold increase in filament barbed end number occurs transiently after stimulation and remains confined almost exclusively to the extreme outer edge of the extending lamellipod (within 100–200 nm of the plasma membrane). This is accompanied by an increase in filament density at the leading edge and a general decrease in filament length, with a specific loss of long filaments. Concomitantly, the Arp2/3 complex is recruited with a 1.5-fold increase throughout the entire cortical filament network extending 1–1.5 μm in depth from the membrane at the leading edge. The recruitment of the Arp2/3 complex at the membrane of the extending lamellipod indicates that Arp2/3 may be involved in initial generation of growing filaments. However, only a small subset of the complex present in the cortical network colocalizes near free barbed ends. This suggests that the 100–200-nm submembraneous compartment at the leading edge of the extending lamellipod constitutes a special biochemical microenvironment that favors the generation and maintenance of free barbed ends, possibly through the locally active Arp2/3 complex, severing or decreasing the on-rate of capping protein. Our results are inconsistent with the hypothesis suggesting uncapping is the dominant mechanism responsible for the generation of nucleation activity. However, they support the hypothesis of an Arp2/3-mediated capture of actin oligomers that formed close to the membrane by other mechanisms such as severing. They also support pointed-end capping by the Arp2/3 complex, accounting for its wide distribution at the leading edge.
Members of the Rho family of small GTPases have been shown to be involved in tumorigenesis and metastasis. Currently, most of the available information on the function of Rho proteins in malignant transformation is based on the use of dominant-negative mutants of these GTPases. The specificity of these dominant-negative mutants is limited however. In this study, we used small interfering RNA directed against either Rac1 or Rac3 to reduce their expression specifically. In line with observations using dominant-negative Rac1 in other cell types, we show that RNA interference-mediated depletion of Rac1 strongly inhibits lamellipodia formation, cell migration and invasion in SNB19 glioblastoma cells. Surprisingly however, Rac1 depletion has a much smaller inhibitory effect on SNB19 cell proliferation and survival. Interestingly, whereas depletion of Rac3 strongly inhibits SNB19 cell invasion, it does not affect lamellipodia formation and has only minor effects on cell migration and proliferation. Similar results were obtained in BT549 breast carcinoma cells. Thus, functional analysis of Rac1 and Rac3 using RNA interference reveals a critical role for these GTPases in the invasive behavior of glioma and breast carcinoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.