NG2/CSPG4 is an unusual cell-membrane integral proteoglycan widely recognized to be a prognostic factor, a valuable tool for ex vivo and non-invasive molecular diagnostics and, by virtue of its tight association with malignancy, a tantalizing therapeutic target in several tumour types. Although the biology behind its involvement in cancer progression needs to be better understood, implementation of NG2/CSPG4 in the routine clinical practice is attainable and has the potential to contribute to an improved individualized management of cancer patients. In this context, its polymorphic nature seems to be particularly valuable in the effort to standardize informative diagnostic procedures and consolidate forcible immunotherapeutic treatment strategies. We discuss here the underpinnings for this potential and highlight the benefits of taking advantage of the intra-tumour and inter-patient variability in the regulation of NG2/CSPG4 expression. We envision that NG2/CSPG4 may effectively be exploited in therapeutic interventions aimed at averting resistance to target therapy agents and at interfering with secondary lesion formation and/or tumour recurrence.
The unbalanced production of pro-and antiangiogenic factors in tumors can lead to aberrant vasculature morphology, angiogenesis, and disease progression. In this study, we report that disease progression in various murine models of solid tumors is associated with increased cleavage of fulllength chromogranin A (CgA), a circulating vasoregulatory neurosecretory protein. Cleavage of CgA led to the exposure of the highly conserved PGPQLR site, which corresponds to residues 368-373 of human CgA 1-373 , a fragment that has proangiogenic activity. Antibodies against this site, unable to bind full-length CgA, inhibited angiogenesis and reduced tumor perfusion and growth. The PGPQLR sequence of the fragment, but not of the precursor, bound the VEGF-binding site of neuropilin-1; the C-terminal arginine (R 373) of the sequence was crucial for binding. The proangiogenic activity of the CgA 1-373 was blocked by anti-neuropilin-1 antibodies as well as by nicotinic acetylcholine receptor antagonists, suggesting that these receptors, in addition to neuropilin-1, play a role in the proangiogenic activity of CgA 1-373. The R 373 residue was enzymatically removed in plasma, causing loss of neuropilin-1 binding and gain of antiangiogenic activity. These results suggest that cleavage of the R 373 R 374 site of circulating human CgA in tumors and the subsequent removal of R 373 in the blood represent an important "on/off" switch for the spatiotemporal regulation of tumor angiogenesis and may serve as a novel therapeutic target. Significance: This work reveals that the interaction between fragmented chromogranin A and neuropilin-1 is required for tumor growth and represents a novel potential therapeutic target.
NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating between phenotype-specific and neoplastic versus non-neoplastic variants of the PG, thus opening up vistas for more selective immunotherapeutic targeting of brain tumours.
IntroductionRenal cell carcinoma (RCC) is the most common type of kidney cancer in adults, and its pathogenesis is strictly related to altered cellular response to hypoxia, in which mTOR signaling pathway is implicated. Everolimus, an mTOR serine/threonine kinase inhibitor, represents a therapeutic option for the treatment of advanced RCC.AimThe objective of this article is to review the evidence for the treatment of metastatic RCC with everolimus.Evidence reviewEverolimus was approved for second- and third-line therapy in patients with advanced RCC according to the results of a Phase III pivotal trial that demonstrated a benefit in median progression-free survival of ~2 months compared to placebo after failure of previous lines of therapy, of which at least one was an anti-VEGFR tyrosine kinase inhibitor (TKI). The role of this drug in first-line setting has been investigated in Phase II trials, with no significant clinical benefit, even in combination with bevacizumab. Everolimus activity in non-clear cell RCC is supported by two randomized Phase II trials that confirmed the benefit in second-line setting but not in first line. Recently, two randomized Phase III trials (METEOR and CheckMate 025) demonstrated the inferiority of everolimus in second-line setting compared to the TKI cabozantinib and to the immune checkpoint inhibitor nivolumab, respectively. Moreover, a recent Phase II study demonstrated a significant benefit for the second-line combination treatment with everolimus plus lenvatinib (a novel TKI) in terms of progression-free survival and overall survival compared to the single-agent everolimus. Basing on preclinical data, the main downstream effectors of mTOR cascade, S6RP and its phosphorylated form, could be good predictive biomarkers of response to everolimus. The safety profile of the drug is favorable, with a good cost-effectiveness compared to second-line sorafenib or axitinib, and no significant impact on the quality of life of treated patients has been found.ConclusionEverolimus still represents a current standard of treatment for RCC progressive to previous treatment lines with VEGFR-TKI. The evidence about two new molecules, cabozantinib and nivolumab, successfully tested head-to-head with everolimus in recently published Phase III trials, will determine the shift of everolimus to the third-line setting and subsequent lines of treatment.
The chondroitin sulfate proteoglycan 4 (CSPG4) gene encodes a transmembrane proteoglycan (PG) constituting the largest and most structurally complex macromolecule of the human surf aceome. Its transcript shows an extensive evolutionary conservation and, due to the elaborated intracellular processing of the translated protein, it generates an array of glycoforms with the potential to exert variant‐specific functions. CSPG4‐mediated molecular events are articulated through the interaction with more than 40 putative ligands and the concurrent involvement of the ectodomain and cytoplasmic tail. Alternating inside‐out and outside‐in signal transductions may thereby be elicited through a tight functional connection of the PG with the cytoskeleton and its regulators. The potential of CSPG4 to influence both types of signaling mechanisms is also asserted by its lateral mobility along the plasma membrane and its intersection with microdomain‐restricted internalization and endocytic trafficking. Owing to the multitude of molecular interplays that CSPG4 may engage, and thanks to a differential phosphorylation of its intracellular domain accounted by crosstalking signaling pathways, the PG stands out for its unique capability to affect numerous cellular phenomena, including those purporting pathologic conditions. We discuss here the progresses made in advancing our understanding about the structural‐functional bases for the ability of CSPG4 to widely impact on cell behavior, such as to highlight how its multivalency may be exploited to interfere with disease progression.—Tamburini, E., Dallatomasina, A., Quartararo, J., Cortelazzi, B., Mangieri, D., Lazzaretti, M., Perris, R. Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB J. 33, 3112–3128 (2019). http://www.fasebj.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.