The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs1, 2. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell cycle inhibitors p16ink4a and p19Arf3. However, deletion of Ink4a/Arf only partially rescues Bmi1 null phenotypes4, indicating that other important targets of BMI1 exist. Here, using the continuously-growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression, and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated1, 2, 5–7, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.
Objectives The RASopathies are a group of syndromes that have in common germline mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) pathway and have been a focus of study to understand the role of this pathway in development and disease. These syndromes include Noonan syndrome (NS); Noonan syndrome with multiple lentigines (NSML or LEOPARD syndrome); neurofibromatosis type 1 (NF1); Costello syndrome (CS); cardio-facio-cutaneous (CFC) syndrome; neurofibromatosis type 1-like syndrome (NFLS or Legius syndrome); and capillary malformation-arteriovenous malformation syndrome (CM-AVM). These disorders affect multiple systems, including the craniofacial complex. Although the craniofacial features have been well described and can aid in clinical diagnosis, the dental phenotypes have not been analyzed in detail for each of the RASopathies. In this review, we summarize the clinical features of the RASopathies, highlighting the reported craniofacial and dental findings. Methods Review of the literature. Results Each of the RASopathies reviewed, caused by mutations in genes that encode different proteins in the Ras pathway, have unique and overlapping craniofacial and dental characteristics. Conclusions Careful description of craniofacial and dental features in the RASopathies can provide information for dental clinicians treating these individuals and can also give insight into the role of Ras signaling in craniofacial development.
In this review, we discuss the central role of fibroblast growth factor (FGF) signaling in mammalian tooth development. The FGF family consists of 22 members, most of which bind to four different receptor tyrosine kinases, which in turn signal through a cascade of intracellular proteins. This signaling regulates a number of cellular processes, including proliferation, differentiation, cell adhesion and cell mobility. FGF signaling first becomes important in the presumptive dental epithelium at the initiation stage of tooth development, and subsequently, it controls the invagination of the dental epithelium into the underlying mesenchyme. Later, FGFs are critical in tooth shape formation and differentiation of ameloblasts and odontoblasts, as well as in the development and homeostasis of the stem cell niche that fuels the continuously growing mouse incisor. In addition, FGF signaling is critical in human teeth, as mutations in genes encoding FGF ligands or receptors result in several congenital syndromes characterized by alterations in tooth number, morphology or enamel structure. The parallel roles of FGF signaling in mouse and human tooth development demonstrate the conserved importance of FGF signaling in mammalian odontogenesis.
RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo.
Increasing evidence implicates abnormal Ras signaling as a major contributor in neurodevelopmental disorders, yet how such signaling causes cortical pathogenesis is unknown. We examined the consequences of aberrant Ras signaling in the developing mouse brain and uncovered several critical phenotypes, including increased production of cortical neurons and morphological deficits. To determine whether these phenotypes are recapitulated in humans, we generated induced pluripotent stem (iPS) cell lines from patients with Costello syndrome (CS), a developmental disorder caused by abnormal Ras signaling and characterized by neurodevelopmental abnormalities, such as cognitive impairment and autism. Directed differentiation toward a neuroectodermal fate revealed an extended progenitor phase and subsequent increased production of cortical neurons. Morphological analysis of mature neurons revealed significantly altered neurite length and soma size in CS patients. This study demonstrates the synergy between mouse and human models and validates the use of iPS cells as a platform to study the underlying cellular pathologies resulting from signaling deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.