Abstract. Electrogenerated chemiluminescence (ECL)with tris(4,7-diphenyl-1,10-phenanthrolinedisulfonic acid)ruthenium(II) (RuBPS) in solution and immobilized on an electrode surface is investigated. Flow injection analysis with a thin layer electrochemical cell modified for ECL detection is used to determine the analytical utility of solution phase RuBPS and RuBPS immobilized in a cationic polypyrrole derivative. The solution phase reaction of RuBPS with oxalate is investigated with regard to the dependence of ECL emission on RuBPS concentration, carrier stream flow rate, and pH. In the parameter range studied, ECL intensity is not linear with the concentration of RuBPS in the sample. A maximum ECL intensity is observed with a RuBPS concentration of approximately 250 gM. Slower linear velocities give greater ECL intensities which is the opposite of what is observed for Ru(bpy)~ + and oxalate. Greater ECL intensity is observed at lower pHs for oxalate and at higher pHs for proline. RuBPS ECL with oxalate yields a working curve with a linear range from 0.1-100 btM oxalate. Solution phase ECL is observed for RuBPS and other amines such as NADH, proline, tripropylamine, and antibiotics including streptomycin and gentamicin. RuBPS is also immobilized by electrochemical polymerization of 1-methyl-3-(pyrrol-1-ylmethyl)pyridinium chloride (MPP) in the presence of RuBPS. This polymer-modified electrode yields ECL for oxalate and for amines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.