Phase-field models such as the Allen-Cahn equation may give rise to the formation and evolution of geometric shapes, a phenomenon that may be analyzed rigorously in suitable scaling regimes. In its sharp-interface limit, the vectorial Allen-Cahn equation with a potential with N ≥ 3 distinct minima has been conjectured to describe the evolution of branched interfaces by multiphase mean curvature flow.In the present work, we give a rigorous proof for this statement in two and three ambient dimensions and for a suitable class of potentials: As long as a strong solution to multiphase mean curvature flow exists, solutions to the vectorial Allen-Cahn equation with well-prepared initial data converge towards multiphase mean curvature flow in the limit of vanishing interface width parameter ε 0. We even establish the rate of convergence O(ε 1/2 ). Our approach is based on the gradient flow structure of the Allen-Cahn equation and its limiting motion: Building on the recent concept of "gradient flow calibrations" for multiphase mean curvature flow, we introduce a notion of relative entropy for the vectorial Allen-Cahn equation with multi-well potential. This enables us to overcome the limitations of other approaches, e. g. avoiding the need for a stability analysis of the Allen-Cahn operator or additional convergence hypotheses for the energy at positive times.
We consider the flow of two viscous and incompressible fluids within a bounded domain modeled by means of a two-phase Navier–Stokes system. The two fluids are assumed to be immiscible, meaning that they are separated by an interface. With respect to the motion of the interface, we consider pure transport by the fluid flow. Along the boundary of the domain, a complete slip boundary condition for the fluid velocities and a constant ninety degree contact angle condition for the interface are assumed. In the present work, we devise for the resulting evolution problem a suitable weak solution concept based on the framework of varifolds and establish as the main result a weak-strong uniqueness principle in 2D. The proof is based on a relative entropy argument and requires a non-trivial further development of ideas from the recent work of Fischer and the first author (Arch. Ration. Mech. Anal. 236, 2020) to incorporate the contact angle condition. To focus on the effects of the necessarily singular geometry of the evolving fluid domains, we work for simplicity in the regime of same viscosities for the two fluids.
This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin's two-scale approach. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.