Cancer aberrant N- and O-linked protein glycosylation, frequently resulting from an augmented flux through the Hexosamine Biosynthetic Pathway (HBP), play different roles in tumor progression. However, the low specificity and toxicity of the existing HBP inhibitors prevented their use for cancer treatment. Here we report the preclinical evaluation of FR054, a novel inhibitor of the HBP enzyme PGM3, with a remarkable anti-breast cancer effect. In fact, FR054 induces in different breast cancer cells a dramatic decrease in cell proliferation and survival. In particular, in a model of Triple Negative Breast Cancer (TNBC) cells, MDA-MB-231, we show that these effects are correlated to FR054-dependent reduction of both N- and O-glycosylation level that cause also a strong reduction of cancer cell adhesion and migration. Moreover we show that impaired survival of cancer cells upon FR054 treatment is associated with the activation of the Unfolded Protein Response (UPR) and accumulation of intracellular ROS. Finally, we show that FR054 suppresses cancer growth in MDA-MB-231 xenograft mice, supporting the advantage of targeting HBP for therapeutic purpose and encouraging further investigation about the use of this small molecule as a promising compound for breast cancer therapy.
A library of GlcNAc 6‐ or 1‐phosphate analogues was designed, and each compound was evaluated computationally through docking studies for its binding affinity to AGM1/PGM3. The compounds with the highest binding affinity, as ranked through a docking score, were synthesised and screened for their ability to inhibit the production of UDP‐GlcNAc. A glycofused oxazoline analogue showed good inhibition, and gave significant results in vitro.
The cell microenvironment plays a pivotal role in mediating cell adhesion, survival, and proliferation in physiological and pathological states. The relevance of extracellular matrix (ECM) proteins in cell fate control is an important issue to take into consideration for both tissue engineering and cell biology studies. The glycosylation of ECM proteins remains, however, largely unexplored. In order to investigate the physio-pathological effects of differential ECM glycosylation, the design of affordable chemoselective methods for ECM components glycosylation is desirable. We will describe a new chemoselective glycosylation approach exploitable in aqueous media and on non-protected substrates, allowing rapid access to glyco-functionalized biomaterials.
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal chemistry applications. In the last few decades, efforts have been focused, among others, on the development of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general overview of the different carbohydrate carrier systems that have been developed as tools in different medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of this topic, the present review will focus on selected examples that highlight the advancements and potentialities offered by this specific area of research, rather than being an exhaustive literature survey of any specific glyco-functionalized system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.