Probiotic ingestion is recommended as a preventive approach to maintain the balance of the intestinal microbiota and to enhance the human well-being. During the whole life of each individual, the gut microbiota composition could be altered by lifestyle, diet, antibiotic therapies and other stress conditions, which may lead to acute and chronic disorders. Hence, probiotics can be administered for the prevention or treatment of some disorders, including lactose malabsorption, acute diarrhoea, irritable bowel syndrome, necrotizing enterocolitis and mild forms of inflammatory bowel disease. The probiotic-mediated effect is an important issue that needs to be addressed in relation to strain-specific probiotic properties. In this work, the probiotic properties of new Lactobacillus and Bifidobacterium strains were screened, and their effects in vitro were evaluated. They were screened for probiotic properties by determining their tolerance to low pH and to bile salts, antibiotic sensitivity, antimicrobial activity and vitamin B8, B9 and B12 production, and by considering their ability to increase the antioxidant potential and to modulate the inflammatory status of systemic-miming cell lines in vitro. Three out of the examined strains presenting the most performant probiotic properties, as Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070 and Bifidobacterium animalis subsp. lactis PBSO75, were evaluated for their effects also on human intestinal HT-29 cell line. The obtained results support the possibility to move to another level of study, that is, the oral administration of these probiotical strains to patients with acute and chronic gut disorders, by in vivo experiments.
Cancer aberrant N- and O-linked protein glycosylation, frequently resulting from an augmented flux through the Hexosamine Biosynthetic Pathway (HBP), play different roles in tumor progression. However, the low specificity and toxicity of the existing HBP inhibitors prevented their use for cancer treatment. Here we report the preclinical evaluation of FR054, a novel inhibitor of the HBP enzyme PGM3, with a remarkable anti-breast cancer effect. In fact, FR054 induces in different breast cancer cells a dramatic decrease in cell proliferation and survival. In particular, in a model of Triple Negative Breast Cancer (TNBC) cells, MDA-MB-231, we show that these effects are correlated to FR054-dependent reduction of both N- and O-glycosylation level that cause also a strong reduction of cancer cell adhesion and migration. Moreover we show that impaired survival of cancer cells upon FR054 treatment is associated with the activation of the Unfolded Protein Response (UPR) and accumulation of intracellular ROS. Finally, we show that FR054 suppresses cancer growth in MDA-MB-231 xenograft mice, supporting the advantage of targeting HBP for therapeutic purpose and encouraging further investigation about the use of this small molecule as a promising compound for breast cancer therapy.
Cancer is one of the major causes of death worldwide. As a consequence, many different therapeutic approaches, including the use of glycosides as anticancer agents, have been developed. Various glycosylated natural products exhibit high activity against a variety of microbes and human tumors. In this review we classify glycosides according to the nature of their aglycone (non-saccharidic) part. Among them, we describe anthracyclines, aureolic acids, enediyne antibiotics, macrolide and glycopeptides presenting different strengths and mechanisms of action against human cancers. In some cases, the glycosidic residue is crucial for their activity, such as in anthracycline, aureolic acid and enediyne antibiotics; in other cases, Nature has exploited glycosylation to improve solubility or pharmacokinetic properties, as in the glycopeptides. In this review we focus our attention on natural glycoconjugates with anticancer properties. The structure of several of the carbohydrate moieties found in these conjugates and their role are described. The structure–activity relationship of some of these compounds, together with the structural features of their interaction with the biological targets, are also reported. Taken together, all this information is useful for the design of new potential anti-tumor drugs.
The paper describes the preparation of new probiotic formulations based on chitosan-coated alginate microcapsules containing three different probiotic strains, Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070, and Bifidobacterium animalis subsp. lactis PBS075 taken individually and as a mixture of them. The effects of microencapsulation on the viability of the strains in conditions simulating the gastrointestinal tract and under industrial processes conditions were studied. In addition, an evaluation of their probiotic properties was also investigated by in vitro tests on the human intestinal cell line HT-29 to explore the effect of microencapsulation on health beneficial effect of the considered strains. Non-encapsulated cells were completely destroyed when exposed to simulated gastric juice and other stress conditions, while encapsulated cells exhibited a significantly higher resistance to artificial intestinal juice and heat and osmotic treatment. Moreover, in this study, the effect of the various microencapsulated probiotic strain formulations was compared with analogous formulations also containing the β-glucan Pleuran. The microencapsulation effectively protected the selected bacteria, as single strain and as a mixture of the three strains in both the formulations with and without Pleuran, from simulating gastrointestinal tract and industrial process conditions in delivering the viable cells without any significant adverse effect on their functionalities. The comparative study of the immunomodulatory properties of each single strain and the mixture of the three strains revealed a synergistic effect of the probiotic mixture, but no appreciable difference between the two kinds of formulations could be detected, as the effect of Pleuran is covered by the higher potential of the probiotic strains.
A new versatile thiophene derivative exomethylene-3,4-ethylenedioxythiophene (emEDOT) is introduced. The molecule can be straightforwardly prepared in two steps from commercially available derivatives and enables facile further derivatization through both acid catalyzed additions of alcohols and standard thiol-ene click chemistry. The preparation of electrochromic materials and of an electrochemical avidine sensor is shown by the oxidative polymerizations of several functionalized EDOT monomers straightforwardly prepared from emEDOT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.