BackgroundMedulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies.Methodology/Principal FindingsThe CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression.Conclusions/SignificanceCulture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.
Human papillomavirus 8 (HPV-8), one of the high-risk cutaneous papillomaviruses (cHPVs), is associated with epidermodysplasia verruciformis and nonmelanoma skin cancer in immuno-compromised individuals. Currently, no vaccines against cHPVs have been reported; however, recent studies on cross-neutralizing properties of their capsid proteins (CP) have fostered an interest in vaccine production against these viruses. We examined the potential of producing HPV-8 major CP L1 in Nicotiana benthamiana by agroinfiltration of different transient expression vectors: (i) the binary vector pBIN19 with or without silencing suppressor constructs, (ii) the nonreplicating Cowpea mosaic virus-derived expression vector pEAQ-HT and (iii) a replicating Tobacco mosaic virus (TMV)-based vector alone or with signal peptides. Although HPV-8 L1 was successfully expressed using pEAQ-HT and TMV, a 15-fold increase was obtained with pEAQ-HT. In contrast, no L1 protein could be immune detected using pBIN19 irrespective of whether silencing suppressors were coexpressed, although such constructs were required for identifying L1-specific transcripts. A fourfold yield increase in L1 expression was obtained when 22 C-terminal amino acids were deleted (L1ΔC22), possibly eliminating a nuclear localization signal. Electron microscopy showed that plant-made HPV-8 L1 proteins assembled in appropriate virus-like particles (VLPs) of T = 1 or T = 7 symmetry. Ultrathin sections of L1ΔC22-expressing cells revealed their accumulation in the cytoplasm in the form of VLPs or paracrystalline arrays. These results show for the first time the production and localization of HPV-8 L1 protein in planta and its assembly into VLPs representing promising candidate for potential vaccine production.
We investigated the potential of Nicotiana benthamiana to express the E7 protein of human papillomavirus 8 (HPV-8), a paradigm genotype among cutaneous HPVs. The protein, modified in its putative pRb-binding domain (E7(QGD)), was transiently expressed in leaves following infiltration with agrobacteria carrying either a binary vector combined with silencing suppressor constructs or replicating tobacco mosaic virus (TMV)-based vectors with different targeting signals. HPV-8 E7(QGD) yields ranged from 250 ng to 4.6 mg per gram of fresh leaf tissue. The highest yields were obtained with TMV-based vectors targeting the antigen to the apoplast. HPV8-CER (H2(q)) mice transformed with the complete early region of HPV-8 showed a delay in the onset of skin papillomatous lesions and produced E7-specific immunoglobulins G when inoculated subcutaneously with leaf extracts expressing E7(QGD). Furthermore, we demonstrated that the plant-made HPV-8 E7(QGD) induced a specific cytotoxic response in C57BL/6 (H2(b)) mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.