The next generation of automotive lithium‐ion batteries may employ NMC811 materials; however, defective particles are of significant interest due to their links to performance loss. Here, it is demonstrated that even before operation, on average, one‐third of NMC811 particles experience some form of defect, increasing in severity near the separator interface. It is determined that defective particles can be detected and quantified using low resolution imaging, presenting a significant improvement for material statistics. Fluorescence and diffraction data reveal that the variation of Mn content within the NMC particles may correlate to crystallographic disordering, indicating that the mobility and dissolution of Mn may be a key aspect of degradation during initial cycling. This, however, does not appear to correlate with the severity of particle cracking, which when analyzed at high spatial resolutions, reveals cracking structures similar to lower Ni content NMC, suggesting that the disconnection and separation of neighboring primary particles may be due to electrochemical expansion/contraction, exacerbated by other factors such as grain orientation that are inherent in such polycrystalline materials. These findings can guide research directions toward mitigating degradation at each respective length‐scale: electrode sheets, secondary and primary particles, and individual crystals, ultimately leading to improved automotive ranges and lifetimes.
Graphite is the most commonly used anode material in commercial lithium-ion batteries (LiBs). Understanding the mechanisms driving the dimensional changes of graphite can pave the way to methods for inhibiting degradation pathways and possibly predict electrochemical performance loss. In this study, correlative microscopy tools were used alongside electrochemical dilatometry (ECD) to provide new insights into the dimensional changes during galvanostatic cycling. X-ray computed tomography (CT) provided a morphological perspective of the cycled electrode so that the effects of dilation and contraction on effective diffusivity and electrode pore phase volume fraction could be examined. During the first cycle, the graphite electrode underwent thickness changes close to 9% after lithiation and, moreover, it did not return to its initial thickness after subsequent delithiation. The irreversible dilation increased over subsequent cycles. It is suggested the primary reason for this dilation is electrode delamination. This is supported by the finding that the electrode porosity remained mostly unchanged during cycling, as revealed by X-ray CT.
Renewable technologies, and in particular the electric vehicle revolution, have generated tremendous pressure for the improvement of lithium ion battery performance. To meet the increasingly high market demand, challenges include improving the energy density, extending cycle life and enhancing safety. In order to address these issues, a deep understanding of both the physical and chemical changes of battery materials under working conditions is crucial for linking degradation processes to their origins in material properties and their electrochemical signatures. In situ and operando synchrotron-based X-ray techniques provide powerful tools for battery materials research, allowing a deep understanding of structural evolution, redox processes and transport properties during cycling. In this review, in situ synchrotron-based X-ray diffraction methods are discussed in detail with an emphasis on recent advancements in improving the spatial and temporal resolution. The experimental approaches reviewed here include cell designs and materials, as well as beamline experimental setup details. Finally, future challenges and opportunities for battery technologies are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.