Graphite is the most commonly used anode material in commercial lithium-ion batteries (LiBs). Understanding the mechanisms driving the dimensional changes of graphite can pave the way to methods for inhibiting degradation pathways and possibly predict electrochemical performance loss. In this study, correlative microscopy tools were used alongside electrochemical dilatometry (ECD) to provide new insights into the dimensional changes during galvanostatic cycling. X-ray computed tomography (CT) provided a morphological perspective of the cycled electrode so that the effects of dilation and contraction on effective diffusivity and electrode pore phase volume fraction could be examined. During the first cycle, the graphite electrode underwent thickness changes close to 9% after lithiation and, moreover, it did not return to its initial thickness after subsequent delithiation. The irreversible dilation increased over subsequent cycles. It is suggested the primary reason for this dilation is electrode delamination. This is supported by the finding that the electrode porosity remained mostly unchanged during cycling, as revealed by X-ray CT.
Since the 1970s, electrochemical dilatometry (ECD) has been used to investigate the dilation of layered host materials due to the intercalation of guest ions, atoms or molecules, and has recently gained traction in application to various electrochemical devices, such as lithium‐ion batteries (LiBs), which have electrodes that undergo volume changes during cycling, resulting in particle cracking and electrode degradation. With resolution capabilities spanning tens of microns down to a few nanometres, dilatometry is a valuable tool in understanding how commonly used electrodes dilate and degrade and can therefore be of critical value in improving their performance. In recent years, there has been a plethora of studies using dilatometry as a monitoring tool for understanding operating performance in various electrochemical devices; however, to our knowledge, there has been no in‐depth review of this body of research to date. This paper seeks to address this by reviewing how dilatometry works and how it has been used for the characterisation of electrochemical energy storage devices.
Thermal runaway of lithium-ion batteries can involve various types of failure mechanisms each with their own unique characteristics. Using fractional thermal runaway calorimetry and high-speed radiography, the response of three different geometries of cylindrical cell (18650, 21700, and D-cell) to different abuse mechanisms (thermal, internal short circuiting, and nail penetration) are quantified and statistically examined. Correlations between the geometry of cells and their thermal behavior are identified, such as increasing heat output per amp-hour (kJ Ah-1) of cells with increasing cell diameter during nail penetration. High-speed radiography reveals that the rate of thermal runaway propagation within cells is generally highest for nail penetration where there is a relative increase in rate of propagation with increasing diameter, compared to thermal or internal short-circuiting abuse. For a given cell model tested under the same conditions, a distribution of heat output is observed with a trend of increasing heat output with increased mass ejection. Finally, internal temperature measurements using thermocouples embedded in the penetrating nail are shown to be unreliable thus demonstrating the need for care when using thermocouples where the temperature is rapidly changing. All data used in this manuscript are open access through the NREL and NASA Battery Failure Databank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.