To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3, 9q31.1) and one for endometrioid EOC (5q12.3). We then meta-analysed the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified an additional three loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a novel susceptibility gene for low grade/borderline serous EOC.
High-grade serous ovarian cancer (HGSC) is characterized by poor outcome, often attributed to the emergence of treatment-resistant subclones. We sought to measure the degree of genomic diversity within primary, untreated HGSCs to examine the natural state of tumour evolution prior to therapy. We performed exome sequencing, copy number analysis, targeted amplicon deep sequencing and gene expression profiling on 31 spatially and temporally separated HGSC tumour specimens (six patients), including ovarian masses, distant metastases and fallopian tube lesions. We found widespread intratumoural variation in mutation, copy number and gene expression profiles, with key driver alterations in genes present in only a subset of samples (eg PIK3CA, CTNNB1, NF1). On average, only 51.5% of mutations were present in every sample of a given case (range 10.2–91.4%), with TP53 as the only somatic mutation consistently present in all samples. Complex segmental aneuploidies, such as whole-genome doubling, were present in a subset of samples from the same individual, with divergent copy number changes segregating independently of point mutation acquisition. Reconstruction of evolutionary histories showed one patient with mixed HGSC and endometrioid histology, with common aetiologic origin in the fallopian tube and subsequent selection of different driver mutations in the histologically distinct samples. In this patient, we observed mixed cell populations in the early fallopian tube lesion, indicating that diversity arises at early stages of tumourigenesis. Our results revealed that HGSCs exhibit highly individual evolutionary trajectories and diverse genomic tapestries prior to therapy, exposing an essential biological characteristic to inform future design of personalized therapeutic solutions and investigation of drug-resistance mechanisms.
We studied the whole-genome point mutation and structural variation patterns of 133 tumors (59 high-grade serous (HGSC), 35 clear cell (CCOC), 29 endometrioid (ENOC), and 10 adult granulosa cell (GCT)) as a substrate for class discovery in ovarian cancer. Ab initio clustering of integrated point mutation and structural variation signatures identified seven subgroups both between and within histotypes. Prevalence of foldback inversions identified a prognostically significant HGSC group associated with inferior survival. This finding was recapitulated in two independent cohorts (n = 576 cases), transcending BRCA1 and BRCA2 mutation and gene expression features of HGSC. CCOC cancers grouped according to APOBEC deamination (26%) and age-related mutational signatures (40%). ENOCs were divided by cases with microsatellite instability (28%), with a distinct mismatch-repair mutation signature. Taken together, our work establishes the potency of the somatic genome, reflective of diverse DNA repair deficiencies, to stratify ovarian cancers into distinct biological strata within the major histotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.