The Mediterranean Diet (MedDiet) has been promoted as a means of preventing and treating cardiodiabesity. The aim of this study was to answer a number of key clinical questions (CQs) about the role of the MedDiet in cardiodiabesity in order to provide a framework for the development of clinical practice guidelines. A systematic review was conducted to answer five CQs formulated using the Patient, Intervention, Comparison, and Outcome (PICO) criteria. Twenty articles published between September 2013 and July 2016 were included, adding to the 37 articles from the previous review. There is a high level of evidence showing that MedDiet adherence plays a role in the primary and secondary prevention of cardiovascular disease (CVD) and improves health in overweight and obese patients. There is moderate-to-high evidence that the MedDiet prevents increases in weight and waist circumference in non-obese individuals, and improves metabolic syndrome (MetS) and reduces its incidence. Finally, there is moderate evidence that the MedDiet plays primary and secondary roles in the prevention of type 2 diabetes mellitus (T2DM). The MedDiet is effective in preventing obesity and MetS in healthy and at-risk individuals, in reducing mortality risk in overweight or obese individuals, in decreasing the incidence of T2DM and CVD in healthy individuals, and in reducing symptom severity in individuals with T2DM or CVD.
We conducted a systematic review of the literature on the use of mobile phones for weight loss. A total of 43 studies were identified on obese or overweight adults, aged 18 years or over. After review, ten articles met the inclusion criteria. There were 19-534 participants per study. Participants were from European, Asian and North American regions. The mean body mass index (BMI) of the subjects varied from 22 to 36 kg/m(2). Two studies used text messaging or multimedia messaging. All the other studies used mobile-phone apps or web-based programmes that could be accessed from mobile phones as a part of a weight-loss intervention or for evaluating their potential for use and their acceptance. Most studies lasted 2-4 months and the maximum duration was 1 year. All but two studies showed reductions in the participants' bodyweight, BMI, waist circumference and body fat in the various interventions. There appeared to be a proportional relationship between weight loss and programme use. The programmes most benefited those who took a pro-active approach to everyday problems. Frequent self-recording of weight seemed to be important, as was the personalisation of the intervention (counselling and individualized feedback). Finally, a social support system acted as a motivational tool.
We compared the ability of different Aeromonas hydrophila strains from serogroup O:34 grown at different temperatures to adhere to Hep-2 cells. We found a high level of adhesion when the strains were grown at 20 degrees C but not when they were grown at 37 degrees C. We previously described that these strains were able to form the O-antigen lipopolysaccharide when they grow at low temperature but not at high temperature. We also obtained by transposon mutagenesis mutants only devoid of the O-antigen lipopolysaccharide (rfb mutants), and they showed significantly lower levels of adhesion to Hep-2 cells than the smooth strains. All these results prompted us to conclude that the O-antigen LPS, in these strains, is an important adhesin.
We cloned and sequenced the structural gene for Aeromonas hydrophila porin II from strain AH-3 (serogroup O:34). The genetic position of this gene, like that of ompF in Escherichia coli, is adjacent to aspC and transcribed in the same direction. However, upstream of the porin II gene no similarities with E. coli were found. We obtained defined insertion mutants in porin II gene either in A. hydrophila (O:34) or A. veronii sobria (serogroup O:11) serum-resistant or -sensitive strains. Furthermore, we complemented these mutants with a plasmid harboring only the porin II gene, which allowed us to define the role of porin II as an important surface molecule involved in serum susceptibility and C1q binding in these strains.
BackgroundImmunoglobulin A is the most abundant isotype in secretions from mucosal surfaces of the gastrointestinal, respiratory and genitourinary tracts and in external secretions such as colostrum, breast milk, tears and saliva. The high concentration of human secretory IgA (hsIgA) in human colostrum strongly suggests that it should play an important role in the passive immune protection against gastrointestinal and respiratory infections.Materials and methodsHuman secretory IgA was purified from colostrum. The reactivity of hsIgA against mycobacterial antigens and its protective capacity against mycobacterial infection was evaluated.ResultsThe passive administration of hsIgA reduces the pneumonic area before challenge with M. tuberculosis. The intratracheal administration of M. tuberculosis preincubated with hsIgA to mice greatly reduced the bacterial load in the lungs and diminished lung tissue injury.ConclusionsHsIgA purified from colostrum protects against M. tuberculosis infection in an experimental mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.