Gap waveguide technology has become an alternative for millimetre and sub-millimetre wave electronic circuit packaging thanks to the loss reduction associated to its use. In this paper a simplified design of an inline transition between microstrip and groove gap waveguide operating at W-band is presented. The transition consists of a tapered microstrip line and a Chebyshev adapter that couple the quasi-TEM mode of the microstrip line to the so-called vertical mode of the groove gap waveguide. The simplicity of this design makes this transition appropriate for MMIC packaging at millimetre frequencies and above. The simulation results have been experimentally validated in the W-band. Good performance has been achieved: return loss better than 10 dB and mean insertion loss lower than 2 dB.
This paper presents a planar silicon integrated subharmonic mixer on top of a photonic-crystal platform. The local oscillator (LO) power is injected through a 2D photoniccrystal (PC) slab to a resonant cavity that effectively couples the signal to a planar bow-tie antenna. The same antenna, which is printed on the top of the PC cavity, contains an antiparallel Schottky diode pair which performs the down-conversion. The proposed design is a simple, easy to integrate, low cost, low profile device. Moreover, the described fabrication process is compatible with active components integration. The performance of the design has been experimentally demonstrated showing good agreement with the simulation and is comparable with the stateof-the-art of planar mixers. The work presented here is based on concepts and technologies from electronics and photonics domains and may be a good starting point for the creation of new devices, allowing the integration and upgrading of existing techniques from both worlds.
In this paper, a linearly polarized low profile and asymmetric Bull's-Eye leaky wave antenna fed by a monopole operating at 13 GHz is presented. Broadside radiation from the monopole is achieved by surrounding it with an asymmetric array of semicircular metallic strips on a grounded dielectric slab. With this implementation we demonstrate high gain with a weight of less than 80 g and lower side lobe levels compared to previous designs fed by a resonant slot. The measured antenna shows an experimental gain of 19.4 dBi with only 5 periods and a side lobe level of −16 dB (−20.3 dB for the numerical ideal case at f = 12.6 GHz), along with a narrow 6º beamwidth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.